
FACULTY OF ENGINEERING AND TECHNOLOGY

MASTER OF SOFTWARE ENGINEERING

Human Resource Optimization for Bug Fixing

Planning Using Multi-Objective Evolutionary

Algorithms

Author:

Elias Khalil

Supervisor:

Dr. Abdel Salam Sayyad

A thesis submitted in fulfillment of the requirements for the

degree of Master of Science in Software Engineering at

Birzeit University, Palestine

January 7, 2019

ii

Approved by the thesis committee:

Dr. Abdel Salam Sayyad, Birzeit University

Dr. Yousef Hassouneh, Birzeit University

Dr. Samer Zein, Birzeit University

Date approved:

iii

Declaration of Authorship
I, Elias Khalil, declare that this thesis titled, “Human Resource Optimiza-
tion for Bug Fixing Planning Using Multi-Objective Evolutionary Algo-
rithms” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a
master degree at Birzeit University.

• Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other in-
stitution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with oth-
ers, I have made clear exactly what was done by others and what I
have contributed myself.

Signed:

Date:

iv

Abstract
In software development projects, bugs are usually accumulated, and

technical debt gets more significant over time. Managers decide to re-

duce the technical debt by planning one or more iterations for bug fixing.

The time required to fix a bug depends on the bugs related competency

areas, the human resource skill level in the assigned bugs components in

addition to resource availability and dependency between bugs. Man-

agers seek to achieve fixing the highest number of bugs during an iter-

ation while at the same time fixing the highest possible number of high

severity and high priority bugs while making sure that the time left to

finish all bugs is minimal and on the other hand making sure that bugs

are not starved in the backlog.

This research provides a framework to optimize human resource as-

signment to achieve the objectives above. First, it compares different

many-objective evolutionary algorithms. Second, it measures the mini-

mum run time to get near-optimal. Finally, validating the need for such

framework by comparing human solutions and those generated by the

framework on building a bug fixing plan.

This thesis uses various data sources by all parts which add more

credibility to the results of experiments conducted. Data used varies from

open source projects to industrial projects and of different sizes.

v

�
	

jÊÓ

vi

Acknowledgements

Foremost, I would like to express my sincere gratitude to my family espe-

cially for my wife Mary for her unlimited support during the past years.

A special thank to my kids Miral, Madeleine and Marcel as the master

time was taken from their family time.

I would like to express my sincere thanks to my advisor Dr. Abdel

Salam Sayyad for his helpful guidelines, instructions, and advice.

Special thanks to all instructors of the software engineering master at

Birzeit university whom I had a chance to enjoy and benefit from their

lectures and efforts.

vii

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Questions . 4

1.3 Research Contribution . 8

1.3.1 Automated Bug Fixing Planning Framework 8

1.3.2 Validating Framework on Three Different Datasets 9

1.3.3 Addressing the Problem Through Many objectives 10

1.3.4 Comparison Between Algorithms for Allocation Do-

main . 10

1.3.5 Comparing NSGA-II with Human Performance (Study

Validation) . 11

1.4 Research Overview . 12

1.5 Research Activities . 13

2 Related Work 15

2.1 Traditional Bug Assignment Approaches 16

2.1.1 Automatic Assignment 16

2.1.2 Semiautomatic Assignment 18

viii

2.2 Search Based Bug Assignment Approaches 19

2.3 Thesis Distinction from Other Studies 22

2.4 Literature Review Summary 24

3 Background 26

3.1 Multi-objective Evolutionary Algorithms (MOEAs) and Pareto-

front solutions . 27

3.1.1 MOEAs applied in research 29

3.2 Evolutionary Genetic Algorithms 37

3.2.1 eGA general Design 38

3.2.2 eGA Operators . 40

3.3 Evaluating multi-objective algorithms and HyperVolume

(HV) . 42

3.3.1 Hyper Volume metrics 43

3.4 JMetal- framework for developing metaheuristics for multi-

objective optimization problems 45

4 Research Methodology And Experiment Setup 47

4.1 Experiment Data Sources . 48

4.1.1 Eclipse Project Data 49

4.1.2 Industrial Data . 52

4.1.3 Datasets Available Bug Properties 53

4.2 Experiment Setup . 53

4.2.1 Chromosome Structure 53

4.2.1.1 Chromosome Operations 54

ix

4.2.2 Multi-Objective Fitness Evaluation 56

4.2.3 Algorithms and jMetal Study 60

4.2.4 Human vs. Algorithm Setup 61

4.3 Experiment Assumptions 65

5 Experiments Results and Analysis 66

5.1 Algorithm Comparison . 66

5.1.1 Algorithm Minimum Run Time 72

5.1.2 Human vs. SBSE Experiment 76

5.2 Framework Planner Advisor UI Tools 81

5.2.1 Solutions Radar Charts 81

5.2.2 Gannt Plan Chart . 84

5.3 Results Impact and Use . 85

6 Conclusion And Future Work 88

6.1 Threats to Validity . 88

6.2 Conclusion . 89

6.3 Difficulties and Obstacles 90

6.4 Future Work . 91

6.4.1 Man in the loop support 91

6.4.2 Integration with Management tools 93

Bibliography 94

.1 Appendix A : Thesis External Links 103

x

List of Figures

2.1 Sample Gannt Chart Produced by Framework 24

3.1 IBEA Pseudo Code [42] . 32

3.2 NSGA-II Algorithm Procedure [2] 33

3.3 Cellular Genetic Algorithm (cGA) [34] 36

3.4 MoCell Algorithm pseudo code [34] 37

3.5 Basic GA algorithm steps [43] 39

3.6 HV equation [2] . 44

3.7 Visualization for the HV matrix [9] 44

4.1 Experiment Chromosome Structure 54

4.2 Experiment UI Tool . 62

5.1 HV Quality Indicators for JDTMilestoneM2 69

5.2 HV Quality Indicators for JDTMilestoneM3 69

5.3 HV Quality Indicators for JDTMilestoneM4 70

5.4 HV Quality Indicators for JDTMilestoneM5 70

5.5 HV Quality Indicators for Industrial Dataset 1 70

5.6 HV Quality Indicators for Industrial Dataset 2 71

5.7 Run Time vs HV for JDTMilestoneM2 74

xi

5.8 Run Time vs HV for JDTMilestoneM4 74

5.9 Run Time vs HV for JDTMilestoneM5 75

5.10 Run Time vs HV for Industrial Dataset1 75

5.11 Run Time vs HV for Industrial dataset2 76

5.12 Total Bugs Vs Priority 2d Projection 78

5.13 Total Bugs Vs Time 2d Projection 78

5.14 Total Bugs Vs Aging 2d Projection 79

5.15 Priority Bugs Vs Aging Factor 2d Projection 79

5.16 Priority Bugs Vs Time left to Fix all bugs 2d Projection . . . 80

5.17 Time left to Fix all bugs Vs Aging Factor 2d Projection . . . 80

5.18 Solutions Radar Chart . 82

5.19 Record . 84

5.20 A Solution Gannt Chart . 84

xii

List of Tables

2.1 Literature Review Summary 25

4.1 Sample of Eclipse Developers Dataset 50

4.2 Sample of Eclipse Bugs Dataset 51

4.3 Study Datasets Properties 53

4.4 Study Objectives Variables 59

4.5 jMetal Experiment Configuration 60

4.6 Experiment Bugs Details . 63

4.7 Experiment Developers Details 64

5.1 Experiment Datasets Details 67

5.2 HV. Mean values . 68

5.3 Average Rankings of the algorithms 71

5.4 HV convergence overtime for diffirent datasets 73

5.5 Hypervolume for NSGA-II vs Human-made Paretos 77

5.6 Partial Sample of a jMetal FUN File 83

1

Chapter 1

Introduction

Software product quality has been taking increasing attention due to our

dependency on software in addition to the dramatic increase in the soft-

ware product size. Bugs are part of any software development or main-

tenance process of any software product. The number of reported bugs

increases proportionally with the product size. Studies show that the

bigger and more complex the product is the more it is defect pron. This

relationship increases monotonically [29] leading to a significant number

of defects.

To deliver a product with high quality within time and budget, it re-

quires spending high effort on testing and maintenance [49, 8]. Statis-

tics showed that 80% of development cost is spent on bug fixing activ-

ities [45]. Unfortunately, projects budget is usually limited where just

32% of software projects are completed on time and within budget [15].

Additionally, developers usually produce a high rate of bugs during the

project life cycle [36, 5, 41, 14]. These facts raise the need to balance the

effort spent on testing and maintenance and the limited schedule and

2 Chapter 1. Introduction

budget.

1.1 Problem Statement

Agile software development promotes an evolutionary change how soft-

ware development process is defined and handled. In Agile method-

ologies, the team aims to deliver a product in an iterative, incremental

manner. This is achieved by iteration-based development where a group

of predefined user stories is selected for implementation in an iteration

period. By the end of the iteration, a delivery is passed to the customer.

This delivery is expected to be working as defined in the related user sto-

ries. To ensure the quality of an iteration quality, testing is performed

throughout the iteration. Bugs discovered during the iteration are fixed

as soon as they are discovered [44]. This fixing approach is crucial due

to the customer expect ion of the iteration output. Unfortunately, this

is not always the case where iterations usually end up with additional

bugs added to the system. these bugs are not fixed in the iteration period

due to developers availability and time limitations. Moreover, additional

bugs are discovered throughout the regression process or are reported by

customers using the product in the field.

With each iteration, more bugs are accumulated in the bugs backlog.

At a certain period of time in the release timeline, management decides

to reduce the size of the bugs backlog significantly. This is achieved by

dedicating one or more iterations for bug fixing where some developers

1.1. Problem Statement 3

are freed to work on bug fixing activities. Setting a plan for a bug fixing

iteration is not trivial especially if the number of targeted bugs are high.

Project managers have to decide which bugs should be fixed in this pe-

riod and who will fix each bug. Prior studies show that selecting bugs to

fix within a target planning period, and the criteria of assigning bugs to

developers are significant factors affecting bug fixing time [26, 4, 30, 49].

Additionally, assigning a bug to the right human resource has a signif-

icant impact on the maintenance period or the amount or nature of the

fixed bugs during this period.

Reported bugs have various properties such as severity, priority, es-

timated time to fix (ETA)... etc. Managers usually use these properties

as inputs to construct a bug fixing iteration plan. Additionally, planning

takes into account the required human resources and related skills. Due

to the various properties affecting bug fixing planning decisions, man-

agers spend high effort and long time making sure they make a balance

between different goals [30, 5]. This problem is more visible and could be

more critical in large-scale projects due to the need to keep control over

the size of the bugs backlog and the priorities of different bugs in addi-

tion to their impact on the overall system behavior, quality and budget.

The primary goal of the iteration is to best handle the bugs in the

backlog as possible. The first goal that raises is reducing the number of

defects, but this is not an ultimate goal. To improve the quality of the

product through the iteration bug fixing and to increase customers sat-

isfaction, managers set other goals of the iteration such as targeting the

4 Chapter 1. Introduction

high priority and severity bugs. This increases customers satisfaction, but

on the other hand, customers would like to see their reported bugs fixed

even if they are not critical. These goals are usually competing where

doing good on one goal does not necessarily lead to a good achievement

of the other goals. Considering all goals makes the iteration planning a

complicated and time-consuming task. Resource allocation is considered

an NP-Hard complex problem [11]. The complexity of this problem arises

from the high number of combinations of possible allocation and the im-

pact of the allocation on product development time, cost and quality [22],

and overall project success [7].

1.2 Research Questions

In this study, different perspectives of bug fixing planning problem are

addressed using search-based software engineering (SBSE). SBSE has proved

its efficiency to provide close-to-optimal solutions in various areas of soft-

ware engineering including project management and resource allocation

[1]. The fact that resource allocation impacts the plan output raises the

need to identify a close-to-optimal HR allocation using SBSE techniques.

This study provides a framework used for constructing an automated

plan. This framework takes off the effort to answer the following ques-

tions which are usually raised upon bug fixing iteration planning ses-

sions:

RQ1: What is the best set of bugs to be fixed in the iteration period

1.2. Research Questions 5

This study targets medium to large scale projects with a bugs backlog

size that is large and hard to optimize manually. Selecting bugs manually

is not an easy task where the purpose of a good plan is to achieve an

optimized plan achieving the best possible for all objectives aimed to be

achieved.

Building a plan handling the objectives manually is a hard problem

and time-consuming. To increase the number of bugs fixed in an iter-

ation, the right bug should be assigned to the right person. Deciding

the right person is done through bug required skills match with the de-

veloper acquired skills. Additionally, the availability of the developer

and workload impact the amount and type of bug fixes she can achieve.

Moreover, fixing severe or high priority bugs usually consumes more

time and requires more skills than fixing trivial bugs.

Additional properties besides the severity and priority are taken into

account in the planning phase. For example, customer reported bugs are

usually considered high priority to be provided to the customer. Such

bugs may not be with a real high priority from the product perspective

and most of them are are not severe as these bugs are discovered by the

customer after the product has passed multiple levels of testing activ-

ities. Providing fixes for such bugs is crucial for customer satisfaction

where the customer feels self worth and attention. Other customer re-

ported bugs may be critical, but such bugs are already with high priority

and taken into account in the optimization. One more important prop-

erty is the creation date of the bug. With a high rate of incoming bugs,

6 Chapter 1. Introduction

some bugs get starved and don’t have the chance to be fixed and stay in

the backlog for ages. In order to minimize this starvation issue, aging is

provided as a minimization objective in this research. Aging is measured

base on the creation time, so to minimize the starvation, managers should

always tend to include old bugs in the iteration plan.

Deciding on the bugs to be fixed in an iteration is not enough, hence

long-term objective is also be considered. This objective is minimizing

the time required to finish the rest of the bugs. Deciding the bug set to be

fixed in the iteration period impacts directly the long-term time objective.

RQ2: Who is the best developer to fix each bug in the iteration

A decision to assign a bug to a specific developer, not another has

a direct impact on the plan optimization. Bug triaging is a challenging

decision as which bug or software module requires a different set of skills

to work on. On the other hand, studies show that developer skill can be

divided on 20 different skill level on each development category [13].

Bugs should be assigned to developers based on their skill, availability,

and productivity. Assigning a bug to the improper developer who does

not have the bug required skills impacts the time required to fix it.

Usually, bug triaging is a manual decision without using any auto-

mated tools. The triaging decision is mainly based on the triager decision

based on previous knowledge about developers capabilities. This could

be useful and applicable in small projects with a controlled bugs back-

log. This could be more challenging and tedious when it comes to bigger

projects where a large number of bugs are reported every day [23].

1.2. Research Questions 7

The main idea about choosing the right developer is that assigning

a bug to a developer with the right skill gets it fixed in a shorter time

than assigning it to another developer with different skills. The time it

takes a developer to fix a bug depends on their skills on the required

skills. Defining a mathematical relationship between required skills and

developer skill can predict the relative time a developer can take to fix a

bug compared to another developer.

RQ3: What is an excellent approach to achieve the iteration goals

Iteration goals may vary from one management person to another.

This depends on the manager perspective, manager position, release tar-

get and customer demand [37]. For example, A manager may look for-

ward to reducing the total number of bugs in the backlog, while another

manager may look for better quality of the product by eliminating or re-

ducing the severe bugs. On the other hand, another Marketing oriented

personnel may be interested more in customer satisfaction by fulfilling

his requested bug fixes. Based on the various perspectives, many optimal

solutions may be available. All solutions which are results of the sug-

gested framework are optimal where it presents the best results of one

goal or objective without hurting the rest of the objective. This frame-

work provides the managers or triagers with a set of optimal possible

plans with fitness factors of each plan objective in order to let them select

one solution to go with.

Automated solutions are excellent and make life easier, but usually,

managers have some considerations to take into account to improve the

8 Chapter 1. Introduction

reasonability of the results based on their perspective. This framework

gives the ability for intervention with the flow of the algorithm direc-

tion while running. This approach is called man in the loop where the

framework user can direct the results in one direction. In evolution-

ary algorithms, this is imposing exploitation to the algorithm search do-

main. Usually, managers are not interested in extreme results on objec-

tives since in a competing objectives environment, improving one objec-

tive affects one or more of the other objectives. Managers can use this

feature to set boundaries for the search domain. This is done a late stage

of the framework runtime to give it more chance for exploration which

mostly results in better results [16].

1.3 Research Contribution

In addition to answering bug fixing planning questions, this study pro-

vides some contributions by filling some gaps that have not been touched

before in this area. Additionally, this study provides a practical frame-

work that can be used in the industry especially that it is going to be

validated over data imported from two different companies repositories.

1.3.1 Automated Bug Fixing Planning Framework

Based on this research an automated planning framework is defined and

implemented to handle the complexity of human resource allocation for

bug fixing. This framework consists of the following components:

1.3. Research Contribution 9

• Parser: Reading bugs data from a dataset. Dataset structure defines

a set of CSV files imported from other systems. Most bug man-

agement systems do not comply with this structure. Hence an ad-

ditional migration tool should be built to provide the framework

with the right files structure and format. Bugs data read from the

dataset are loaded into objects holding properties and methods for

bugs, developers, components and projects

• jMetal Executer: jMetal Framework [18] is used to run evolutionary

algorithms to handle bugs allocation optimization problem.

• Solution Selector: A tool used to provide Framework users with

a set of optimal solutions to select from. This is used for the final

stage or for the man in the loop intervention.

1.3.2 Validating Framework on Three Different Datasets

Most related studies experiment the human resource allocation for bug

fixing planning on a single dataset. In most cases, these datasets are open

source datasets. An open source is still a valid option but it does not

have all the required properties such customer input. Additionally, in

open source projects, there is not dedicated developers, and developers

select bugs to fix based on their convenience.

In this research, the datasets selected for the experiment are an Eclipse

open source data set used by Karim [27] but using different objectives

10 Chapter 1. Introduction

that what they have done. Additionally, this research targets two dif-

ferent datasets imported from real industrial bug repositories. These

datasets contain multiple projects and multiple components per project.

1.3.3 Addressing the Problem Through Many objectives

All studies targeting the human resource bug fixing allocation problem

that is conducted before this study consider a one or two objectives ap-

proach. This study approach takes a different dimension by increasing

the number of objectives. This research is the first research to target many

objectives instead of single and multiple objectives.

Through this research, the need and advantage of many objectives

solution are presented providing the decision maker with more metric to

choose one solution out of the optimal solutions set. Additionally, this

research shows how adding more objectives does not hurt the solution

space, while it provides more alternatives.

1.3.4 Comparison Between Algorithms for Allocation Do-

main

Many SBSE evolutionary algorithms are used to handle many software

engineering problems. Different algorithms perform differently in a dif-

ferent domain. Bug allocation problem has some specialties such as skills,

bug properties and limited time. This study conducts all experiments on

more than one algorithms

1.3. Research Contribution 11

The initial plan is to use NSGA-II, MoCell and IBEA algorithms for

this research. These algorithms are selected due to their popularity in the

SBSE area. The experiments don’t include multiple parameter settings

for each algorithm because this leads to a big range of confusing results

especially that they are run on different projects too.

1.3.5 Comparing NSGA-II with Human Performance (Study

Validation)

In order to show the power of SBSE for automatic building of a bug fix-

ing plan. An experiment was conducted to compare human-built plans

with plans (solutions) provided by NSGA-II algorithm. This experiment

is run for 60 bugs backlog to build a one week plan. 31 volunteers par-

ticipated in this experiment in one hour sessions. This experiment shows

that NSGA-II solutions outperform human-made solutions. This is done

by collecting all man-made solutions in a Pareto of non-dominated solu-

tions. These solutions are compared with a Pareto of NSGA-II solutions

using Hypervolume and by calculating the Euclidean distance between

solutions in the two sets. Results of this experiment show the complexity

of handling multiple objectives in a plan manually. Although this exper-

iment was conducted on a relatively small dataset, it clearly presents the

effectiveness of SBSE approach.

12 Chapter 1. Introduction

1.4 Research Overview

Intensive literature review has been conducted in order to find out the re-

lated work in the resource allocation and bug fixing planning fields. Ad-

ditionally, focus in the literature review is put on SBSE and evolutionary

algorithms. The rest of the research has been divided into the following

chapters:

• Related Work: Intensive literature review investigating the stud-

ies conducted on both human resource allocation and bug fixing

planning. Additionally, studies using SBSE are highlighted and is

compared to this study methodology and contribution.

• Background: A description of the theory behind this study and the

tools used. Meta-heuristic optimization is explained in the context

of this thesis study describing non-dominated solutions and their

relation to the solutions that can be provided for the decision mak-

ers.

• Research Methodology And Experiment Setup: Describing the dif-

ferent dataset used in this study in addition to the setup used. This

includes the algorithms configuration, bugs and developers data in

addition to human validation experiment setup.

• Experiments Results and Analysis: presenting the results of the

experiments done and analyzing them. This includes deciding of

1.5. Research Activities 13

the best algorithm to be used and the time required to run it. Addi-

tionally, this section analyzes the human vs. algorithm experiment

to present the power of solving this optimization problem through

SBSE

• Conclusion: summarizing the results of this study while present-

ing the threats to validity. Future work is suggested in this chapter

based on this study results.

1.5 Research Activities

Target research includes three different datasets, and each dataset con-

tains one or more project in addition to various sizes of developers avail-

able for study. The following activities are conducted:

• Detailed jMetal experiment: A jMetal experiment is built to present

the objectives and approach and get result presenting the impor-

tance of the study and problems it targets. This is achieved by pars-

ing the experiment data in a structure consuable by jMtal frame-

work, constructing and tuning jMetal operators, then get optimal

results from the jMetal.

• Algorithms Comparison: Three algorithms are used in this study

(IBEA, MoCell, and NSGA-II). Quality of the Pareto optimal solu-

tions output of each algorithm is measured on each dataset and

compared.

14 Chapter 1. Introduction

• Algorithm minimal run time: Finding the minimal time required

to find a set of solutions near to optimal.

• Algorithm vs. Human plans: To present the power of the sug-

gested framework, Managers are asked to provide manual plan-

ning for one or more dataset to be compared by the framework out-

put.

15

Chapter 2

Related Work

Human resource allocation for bug fixing planning is an old problem that

has been frequently approached in the literature review due to the impor-

tance of this problem. Bug fixing is one of the important topics in soft-

ware testing and maintenance [24]. Many studies approached the issue

of bug fix planning [14, 47, 49]. Most of those studies used traditional

methodologies to address this problem.

In this chapter, a comprehensive review will be presented for previous

studies that have approached this problem. This review is classified into

two categories. Traditional approaches targeting this problem is the first

category where researchers have used different automatic algorithms to

decide the best-optimized bug assignment. The second category includes

researches that have adopted search-based software engineering (SBSE)

and meta-heuristic

16 Chapter 2. Related Work

2.1 Traditional Bug Assignment Approaches

Bug assignment has been studied widely in the past decade. Literature

review divides the traditional assignment approaches into automatic and

semi-automatic approaches. Different types of algorithms are used in the

automatic assignment for bugs to developers where it does not require

human intervention. On the other hand, semiautomatic approaches pro-

vide humans with parameters and recommendations to help humans to

take assignment decisions.

2.1.1 Automatic Assignment

Cubranic and Murphy have propose an automated solution for bug triage

[33]. They apply machine learning techniques to help decision makers

to triage bugs. This study uses text categorization to decide who is the

best developer to work on a bug. Eclipse project is used to present the

contribution and capabilities of this study using a prototype application

running on 15,859 bugs. The main idea behind this study was to suggest

an approach which assigning a new reported bug to a developer with-

out any human intervention and any change of the assignment or fixing

process and tools.

The framework used by Cubranic and Murphy is based on the prob-

lem of assigning a text document into one or more topic categories or

classes based on a study done by McCallum [32]. Each developer is

2.1. Traditional Bug Assignment Approaches 17

mapped to one class while a bug is mapped to a document represent-

ing a supervised learning problem. Many supervised learning problem

can be used for text classification such as k-nearest neighbor and deci-

sion trees. The approach determines the best suitable developer to assign

bug two. This does not guarantee the best optimization including cost,

developer load, and timing.

Latent Semantic Indexing is another approach used for automatic bug

triage. A study conducted by Ahsan and others [3] has used techniques

based on bug categorization. 1,983 resolved bug are selected for this case

study where the suggested framework is used to triage bugs to develop-

ers then comparing the results to the already resolved bugs. The algo-

rithm has achieved 44% classification accuracy. Results obtained through

this framework are interesting but still, it does not take any other objec-

tives in the triage process.

Tossing graphs is another approach used for bug triage in lecture.

Both Jeong [t]jeong2009improving and Bhattacharya [10] have used this

approach. Both studies have used Mozilla and Eclipse bugs and applied

Tossing graphs to get the best developer to be assigned to a bug. Toss-

ing graphs uses classifiers (Markov-model based) to recommend poten-

tial developers. Related studies use fine-grained updated and added ex-

tra attributes for classification; using additional attributes on edges and

nodes while explaining the importance of adding additional attributes

and their impact on the results and accuracy.

Training set reduction is another approach used for bug triage by Zou

18 Chapter 2. Related Work

and others [52]. In this study, a training set reduction is proposed using

the combination of feature selection and instance selection. Their training

set approach is a process consisted of 2 phases which includes feature se-

lection which is responsible for removing irrelevant words and instance

selection which is responsible for removing irrelevant bug reports. This

study was applied on Eclipse project.

2.1.2 Semiautomatic Assignment

Anvik et al. [5] presented an approach for semi-automating the assign-

ment of bug to a developer. They applied a machine learning algorithm

based on text categorization. Their approach uses a bug repository; the

data form this repository is used later on by an algorithm to predict who

can fix each bug. They solved problems with large numbers of bug. How-

ever, their approach does not address the bug fixing time, and bug assign-

ment issue. This study also uses Eclipse bugs for the experiment.

Severity is also suggested in addition to bug triage in a study done by

Yang and others [48]. This study is essential due to addressing a severity

factor in addition to a bug to developer assignment. The topic of the

bug is extracted depending on historical information taken from the bugs

repository for fixed bugs to find similar bugs. New bugs are compared to

previously categorized reports based on multiple features where severity

of the bug is related to the features of bugs in the same topic. Datasets

from Eclipse, Mozilla, and Netbeans are used to validate this approach.

2.2. Search Based Bug Assignment Approaches 19

2.2 Search Based Bug Assignment Approaches

In this section, studies which use SBSE to approach bug to developer

assignment are reviewed. These studies have targeted the problem from

some perspectives and objectives, but still, there is much space for this

thesis to contribute.

Xiao and Afzal [47] used SBSE to address resource scheduling for bug

fixing tasks problem. Their objective was to minimize schedule time that

is required to fix a set of given bugs. The inputs for their study are Bug

properties, Resource skills, and availability. In their work, they treated

all factors as one objective with different constraints. Moreover, they pro-

posed a multi-objective fitness function by linearly combining all the ob-

jective with different weights. This study took skills into account, but

skills were mainly around components. For example, Database skill was

required when working on database and UI skill is required when work-

ing on UI components. It did not address the cases where multiple skills

are required to address a bug in a particular component.

Study of Xiao and Afzal [47] focused on supporting many objectives

but getting deep into this study, it is apparent that it was not mean a

meta-heuristic multi-objectives. Actually, it was weights added based on

multi-objective to come up with a single objective solution based on GA

and hill climbing algorithms.

This study addresses this problem using many-objective formulations,

20 Chapter 2. Related Work

and finding sets of Pareto-efficient solutions. In addition, no fixed num-

ber of bugs to be solved is defined. Instead, it is treated as an objective

to be achieved in a fixed period iteration. Because in reality developers

usually have more bugs than what they can fix in a single iteration [5, 41].

Karim and Rahman have conducted two studies on the bug to de-

veloper assignment [27, 38]. In the first study [38] They have suggested

a framework to assign one developer to each bug, while in the second

study [27] they adopted an approach of assigning one or more develop-

ers to a single bug. This study is the main reference for our study due to

the following similarities:

• Each bug has a set of skills called competency areas required to be

acquired by a developer to be fixed. A set of competency areas

are defined for each project and each bug a percentage value for

each competency area is set indicating the ratio of work required

per competency area.

• Part of this thesis experiment is using the same dataset used by

Karim and Rahman. It uses Eclipse Platform and JDT but with dif-

ferent perspective and scope.

• Supporting multi-objective study. They have studied two objec-

tives: time and cost. This thesis approach is also multi-objective,

but they are different.

2.2. Search Based Bug Assignment Approaches 21

Another type of related work is task planning and human resource al-

location using SBSE. Ren et al. [40] conducted an empirical study to opti-

mize both developer team staffing and work package scheduling through

cooperative co-evolution to achieve early overall completion time. They

used a single fitness evaluation, and some factors such as developer skills

and expertise are omitted. Data used in this study is imported from real

industrial cases.

Park et al. [35] suggested a GA approach for solving human resource

allocation problem reflecting some practical considerations. Their objec-

tives were to finish a set of tasks by a set of developers with minimal time,

least developer multitasking time, assignment on relevant tasks and bal-

ance of allocation. Their approach assumed finishing all tasks. However,

in bug fixing, developers may not be able to fix all bugs due to large

accumulated bugs backlog, and during the software life, new bugs are

reported everyday [23].

Kang et al. [26] addressed constraint-based human resource alloca-

tion in the software project. They used accelerated simulated annealing

(ASA) with constraints to achieve their objective to optimize scheduling

of human resources allocation. Their study does not take task priorities

into account, while our study does. Additionally, in this study, these con-

straints are treated as objectives, so a manager is given a set of various

solutions to select from a Pareto front of solutions.

A study using multi-objective SBSE for tasks resource allocation is

22 Chapter 2. Related Work

conducted by Bibi [12]. The three objectives are to increase resource uti-

lization, decrease the cost of development and decrease Implementation

time. They have made a comparison between three algorithms: GA,

and multi-objective particle swarm (MOPSO) in addition to elicit non-

dominated sorting evolutionary strategy. The approach followed by this

study is using data from previously published cases study while com-

paring their experiment results with the published case study showing

improvement in all objectives. MOPSO was the main contribution of

this study where it outperformed the other algorithms. Data for the case

study was custom data provide on an MS project.

2.3 Thesis Distinction from Other Studies

This thesis differs from the above-related work in some aspects which

presents its contribution in the bug to developer allocation area. The dif-

ferences can be summarized in the following points:

• Many-objective: All tradition studies have focused on bug triage

more than building a plan. This did not include any other objective

else than selecting the best fit developer. Some SBSE studies have

targeted this problem but most of them are single objective studies.

This thesis is targeting many objectives which have never been in-

vestigated in literature such as Customer priorities and bugs aging.

2.3. Thesis Distinction from Other Studies 23

• Industrial data: human resource allocation for bug fixing is a real

industrial problem especially when it comes to large projects. As

described in Table 2.1 most studies uses open source projects bugs

for the experiment. In industrial data, extra properties are included

such as customer priorities and real targeted developers classifica-

tions. A previous study [28] shows that adding more objectives do

not hurt the overall quality of the other objectives while it gives

managers more insights into output solutions.

• Iteration based: Recently most development processes are adopt-

ing iterative, incremental methodologies. This means that a fix size

team has a fixed period to accomplish specific objectives. Most

studies focus on reducing time and cost while fixing all bugs. This

is not practical as it is rare that a big project has all bugs fixed. This

thesis consider a fixed size team which means a fixed cost in addi-

tion to fixed iteration time that is predefined and agreed on with

project stakeholders which means a fixed time constraint. Hence,

both objectives are removed from the problem, and other objectives

are targeted.

• Simple and easy to integrate: This thesis sets design for an auto-

mated framework for planning. Inputs and outputs are easily trans-

lated into a real process related data. A simple interface can be inte-

grated with bug repositories such as Jira or Rally to read bugs back-

log, developers and timing and also framework can be integrated to

24 Chapter 2. Related Work

automatically save a plan to the system based on human selection

out of the Pareto optimal solutions coming out of the system. This

framework is capable of generating plan Gannt charts as illustrated

in figure 2.1 for human understanding of the generated solutions.

FIGURE 2.1: Sample Gannt Chart Produced by Framework

2.4 Literature Review Summary

Table 2.1 summarize related work done on bug to developers assignment

problem. It includes both traditional and SBSE approaches. Traditional

approaches are comprehensive while on the other hand SBSE studies are

limited in number and contribution which raise the need for this study.

2.4. Literature Review Summary 25

Study Approach Dataset Open Source # Obj

Automatic bug triage using text categorization [33] Machine learning Eclipse yes -

Automatic software bug triage system (bts) based on latent semantic indexing and
support vector machine [3]

Bug categorization Mozilla Yes -

Improving bug triage with bug tossing graphs [25] Tossing graphs Mozilla & Eclipse Yes -

Automated, highly-accurate, bug assignment using machine learning and tossing
graphs [10]

Machine learning and tossing graphs Mozilla and Eclipse Yes -

Towards training set reduction for bug triage [52] Training set reduction Eclipse Yes -

Who should fix this bug? [5] Machine learning Eclipse Yes -

Towards semi-automatic bug triage and severity prediction based on topic model
and multi-feature of bug report [48]

Historical information Eclipse, Mozilla, and Netbeans Yes -

Search-based resource scheduling for bug fixing tasks [47] SBSE - GA Industrial NO 1

An empirical investigation of a genetic algorithm for developer’s assignment to
bugs [38].

SBSE - GA, K-Greedy Eclipse Yes 1

An empirical investigation of single-objective and multi-objective evolutionary al-
gorithms for developer’s assignment to bugs [27]

SBSE - GA Eclipse Yes 2

Cooperative co-evolutionary optimization of software project staff assignments
and job scheduling [40].

SBSE -CCEA Industrial No 1

Practical Human Resource Allocation in Software Projects Using Genetic Algo-
rithm [35].

SBSE - GA Custom NO 1

Constraint-based human resource allocation in software projects [26]. Accelerated simulated annealing Government information system No 1

Comparison of Search-Based Software Engineering Algorithms for Resource Allo-
cation Optimization [12].

SBSE- MOPSO custom No 3

TABLE 2.1: Literature Review Summary

26

Chapter 3

Background

Human resource allocation for bug fixing involves competing objectives

such as a total number of fixed bugs in the iteration vs. number of fixed

severe bugs in this iteration. Multi-objective metaheuristic algorithms

are designed to get an optimal solution. With multi-objective, there is

no single optimal solution but a set of optimal solutions where no other

solution is better than in the search space. These solutions are called non

dominated solutions. Multi-objective algorithms provide a Pareto front

of non dominated solutions [42].

This chapter presents the theoretical background in details behind

multi-objective problems and algorithms and the Pareto-front solutions,

and focus on the algorithms used for this research. Evolutionary genetic

algorithms theory is introduced in addition to operators used for algo-

rithm’s execution. Following that; HyperVolume metric which is used

for evaluating the solutions obtained from the algorithms comparison is

presented and discussed. Finally, a full description of the jMetal frame-

work is discussed as it is used for problems evaluations

3.1. Multi-objective Evolutionary Algorithms (MOEAs) and

Pareto-front solutions
27

3.1 Multi-objective Evolutionary Algorithms (MOEAs)

and Pareto-front solutions

A multi-objective optimization problem is considered a complex prob-

lem; as it states the challenge of evaluating more than two objectives in

most of the times; and these objectives are contradicting and competing

with each other, so the need for a computational algorithm is becoming

higher.

Optimization problems are supposed to find the optimal solution from

a considerable search space; which adds to the complexity of the prob-

lem; so finding the best and the optimal solution becomes nearly impos-

sible using exact search methods and algorithms. The solution to this

dilemma is to use metaheuristics algorithms, which provides a nearly

optimal solution for complex problems. What adding to the complexity

of the problem is that humans find it nearly impossible to perform the

evaluation manually without the help of algorithms. The computational

power and resources needed to solve the problem is high, and time to

obtain the optimal solution is a critical factor in solving problems.

Evolutionary Algorithms are classified under metahueristic algorithms,

and it is applied to solve multi-objective optimization problems by pro-

viding solutions near to the optimal solution as much as possible based

on an evaluation factor. Over the years and since Since 1985 [51], algo-

rithms were studied and applied to solve real-world software engineer-

ing problems. An important aspect of evolutionary algorithms is that

28 Chapter 3. Background

no generalization can be adapted and say that one or set of algorithms

outperforms others for all or most optimization problems [18]. Reasons

can be summarized in four main points according to Durillo and Nebro

in there study about jMetal [18], first is the absence of a benchmark for

MOEAs that is internationally accepted and can be refer to, second is that

no metrics agreed on to be used to evaluate the performance of the algo-

rithm and then rating it according to results from other algorithms; third,

the variation in the parameter settings used in different studied plays a

role in making it harder to generalize conclusions, finally; different im-

plementation of metaheuristics algorithms affects the numerical results

and the performance of the algorithm based on the programming lan-

guage for example.

Multi-objective problems present a set of solutions, which are referred

to as the problem search space. The search space for a multi-objective

problem has many solutions in comparison with the single objective prob-

lem that may have one unique optimal solution. Each solution in the

search space is represented as a vector, the components of the vector are

the value scored according to each objective, and later on used to perform

the trade-off between these solutions, when the decision maker uses his

implicit knowledge to compare between the alternatives and then select-

ing the most acceptable one for their related problem [51].

Each multi-objective problem consists of A Pareto-front is a method

used to represent the solutions in a search space, as points on an N co-

ordinates space, where each coordinate represents one of the objectives

3.1. Multi-objective Evolutionary Algorithms (MOEAs) and

Pareto-front solutions
29

of the problem, a Non-dominant solution is: a solution where no other

solution is better than it.

A solution x(1) is said to be dominating x(2) if x(1) is not worse than x(2)

in all objectives and x(1) is better than x(2) in one or more objectives [31].

Measuring how much the objective is good is handled through defin-

ing fitness criteria for each objective which could be maximized or mini-

mized for better results.

Many optimization search based algorithms have been studied over

the past 20 years. Evolutionary algorithms have provided significant so-

lutions for both single and multi-objectives search-based problem.

3.1.1 MOEAs applied in research

In this research we are using the following MOEAs:

1. Indicator-Based Evolutionary Algorithm (IBEA)

IBEA is one of multi-objective optimization algorithm that is a preference-

based evolutionary algorithm [50]. The algorithm is able to capture

the preference of the decision maker and use it to direct the search

process for the multi-objective problem. The preference is being de-

fined in the start of the search process and named the indicator, then

make it the base of the execution and selection process afterward,

this means that the preference guides the whole search process in

a straightforward process without the need of other sharing opera-

tors or diversity techniques. Also, using IBEA the population size

30 Chapter 3. Background

can be both arbitrary and faster than other algorithms as it performs

the comparison over pairs and not over the whole population set

[50]. IBEA uses preference value to find Pareto-optimal solutions,

so it achieves the most preferred solution [42].

The algorithm stands out in its dominance criteria to minimize the

distance between the true and the obtained Pareto fronts and to

maximize the diversity of the obtained Pareto-fronts. IBEA assigns

to each solution a weight based on quality indicators, which ap-

plies that user preferences are given more wights and factoring [42].

Other algorithms apply to rank for each in the solution after being

refined against information captured from the objective space; al-

though different algorithms; other than IBEA; applies this in dif-

ferent aspects, still most of them were not able adapt to changes

according to the preference-based in different solutions, with the

lack of this flexibility one approach was applied to different prob-

lems and preferences, which led to the failure in capturing specific

problem objectives in the obtained Pareto-fronts [50].

Figure 3.1 shows the algorithm pseudocode in reference to [42]. The

main procedure of the algorithm starts with the generation of the

population P of size n, and initializing the value of the counter m

to be 0. The second step is the fitness assignment for the individuals

in the obtained Pareto P . In the third step; an environmental selec-

tion is used by performing a loop that iterates over the individuals

until the size of the population P does not exceed n by choosing the

3.1. Multi-objective Evolutionary Algorithms (MOEAs) and

Pareto-front solutions
31

individual with the smallest fitness then removing it from the pop-

ulation P and do an update for the fitness values for the rest of the

individuals. This step involves a fitness factor k. The fourth step

is the termination step for the loop mentioned in step three, where

a stop criterion is met so the vector of the individual in the deci-

sion variable now satisfies criteria. The fifth step performs a binary

tournament selection with replacement in P , the mating used in this

step fills the temporary population pool P ′. The final step involves

applying mutation and recombination operators to the pool P ′ and

get offspring and adding them to P , and increasing the counter m

by one, and go back to step two [50].

2. Non-dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II is an evolutionary algorithm that presented an algorithm

that solved other previously algorithms drawbacks. The first is-

sue was computational complexity which leads to more resources

consumption during execution, NSAG-II presented a faster non-

dominated sorting algorithm with complexity of O(mN (2)) in com-

parison to previously proposed algorithms that has O(mN (3)) com-

plexity [17]. The second issue is that other MOEA algorithms; up

to the time of developing NSGA-II; were criticized by the lack of

non-elitism approaches which relates to higher computational com-

plexity and lack of exploitation support [17]. The third issue is that

other MOEAs needed to set up a specific value for the sharing pa-

rameter which is used in the sharing process to ensure variations

32 Chapter 3. Background

FIGURE 3.1: IBEA Pseudo Code [42]

3.1. Multi-objective Evolutionary Algorithms (MOEAs) and

Pareto-front solutions
33

FIGURE 3.2: NSGA-II Algorithm Procedure [2]

in the obtained solutions, a parameterless approach is better [17] as

the value of this parameter has to be assigned a given value and so

bias in the obtained solutions. NSGA-II solved this parameterized

issue by presenting a selection operator to select the best chromo-

some from parents/children pool in a population by referring to

its fitness and spread values. The innovation in the multi-objective

approach followed by NSGA-II added diversity and spread to the

solutions obtained in the Pareto-front and made NSGA-II a remark-

able algorithm with satisfying results if compared with other algo-

rithms [17].

Figure 3.2 illustrated NSGA-II procedure in four steps. In the first

step, a population Rt is randomly generated, this population in-

cludes parent population Pt and then applying operators includ-

ing mutation and Binary tournament selection, recombination, to

34 Chapter 3. Background

generate offspring population Qt of the size N ; chromosomes in

the population Rt are assigned the fitness value that refers to its

non-domination level, and they are being ranked and sorted based

on non-domination where minimizing the fitness value is desired.

The result of this sorting process will produce fronts Fi where i =

1, 2, 3, In the second and third steps, a new population P(t + 1)

is be being set from the best F ranked and passed to the next step;

if the size of F1 is less than N then the chromosomes are being se-

lected according to the crowding distance approach by measuring

the density of the solution from its neighbors and then comparing

values between all solutions, and passed to the next step, and rest of

the solutions in F2, 3, ... are rejected. If the not, then the population

includes chromosomes from F2, 3, ... and so on. Finally in the fourth

step; Operators including crowded tournament selection, crossover

and mutation will be applied to get a new population Q(t− 1) form

P(t+1). In each iteration, a counter i is increased by 1 as the [2] [17].

3. Multi-Objective Cellular Genetic Algorithm (MoCell)

MoCell main characteristic is the usage of an external archive to

keep non-dominated solutions. The elements of the archive are

used for feedback where individuals in the population are randomly

replaced in each iteration so elite solutions are included in the ob-

tained front with higher probability [34].

The MoCell algorithm is built based on Cellular Genetic Algorithms

3.1. Multi-objective Evolutionary Algorithms (MOEAs) and

Pareto-front solutions
35

(cGA). Figure 3.3 illustrates the cGA; where the algorithm struc-

ture the population and apply mutation and crossover operators on

parts of the population instead of applying operators to the popula-

tion as a whole. MoCell applies the cellular concept where a neigh-

borhood is highly used; so in each breading loop of the algorithm,

each individual in the population only contact with its neighbors.

This increases the exploration in the search space and exploitation

is assured by applying operators inside neighborhoods. This mech-

anism makes better sampling in the search space which increases

the quality of the solutions obtained in most cases [34].

Figure 3.4 shows the steps of the MoCell algorithm. The algorithm

starts with preparing an archive which is empty to store non-dominated

solutions which are named the Pareto-front. The individuals in the

population are divided into a two-dimensional grid, where a breed-

ing loop is active to apply genetic operators over them until a ter-

mination condition is met. In this loop, every two individuals are

selected from the neighbors, apply crossover and mutation to gen-

erate the offspring, this offspring is being evaluated against the fit-

ness function. After that, the offspring is compared with the indi-

viduals in the auxiliary population and if its fitness value is better

than individual in the current position and if not it is ignored, and in

case both are nondominated then the individual with better crowd-

ing distance measure takes place at the current position. Another

36 Chapter 3. Background

FIGURE 3.3: Cellular Genetic Algorithm (cGA) [34]

comparison to be inserted in the external archive; given that all in-

dividuals in this archive are ranked according to the crowding dis-

tance measure, then the individual is inserted, and if the archive is

full, then the individual with the worst crowding distance measure

is removed. The final step of the algorithm includes replacing the

old population with the auxiliary population, which means better

individuals are passed to the next generation, also feedback is per-

formed to replace individuals with random size from the external

archive; i.e the Pareto front with individuals from the population

[34].

3.2. Evolutionary Genetic Algorithms 37

FIGURE 3.4: MoCell Algorithm pseudo code [34]

3.2 Evolutionary Genetic Algorithms

In the past few years, evolutionary genetic algorithms (eGA) were ap-

plied to solve real-life problems, and results were promising which en-

couraged researchers to invest more time and effort to experiment and

develop and improve the used algorithms in order to emerge robust and

practical optimization techniques based on GA to solve multi-objective

problems.

GA is classified as search algorithm inspired by nature where the for-

mulation of new spices depends on natural selection and the fitness of

individuals [43]. It also can be seen as the "abstraction of the biological

38 Chapter 3. Background

evolution in computer science" [39].

GAs was first invented by John Holland back in the 1960s; where he

studied the natural evolution to adopt the idea and translate it to algo-

rithms used in computer science to solve complex problems [39]. Con-

cepts including gene, mutation, crossover, and population are imple-

mented in the algorithms as described in the next section.

3.2.1 eGA general Design

As explained in the previous section; the genetic algorithm inherits the

natural biological concepts to formulate computer algorithms. In the liv-

ing creatures; each cell is a set of chromosomes which represent the char-

acteristics of the creature. Each chromosome has a set of genes to present

a particular property or characteristic. The different possibilities for each

gene are called alleles. Upon production stages; crossover, mutation, and

selection are applied to generate the new offsprings. The fitness is the

probability that this offspring is living and reproduce new offsprings in

the next generation [39].

The computer science, the genetic algorithm is used to find the best

solution from a set of solutions for the same problem which is a complex

problem in most of the cases. The problem is encoded and being repre-

sented as a chromosome, a population of chromosomes is available and

operators are being applied, a fitness function is well defined, in which

the individuals can be evaluated and the survivors of the next genera-

tions are selected [39].

3.2. Evolutionary Genetic Algorithms 39

FIGURE 3.5: Basic GA algorithm steps [43]

The solutions of each problem; are being represented as the popu-

lation of chromosomes. The chromosome represents each one of these

solutions could be a string of type binary or integer digits, each digit is

called a gene. The alleles for each gene could be 0 or 1 if the gene is

binary for example, where a 0 represents the absence of the gene in the

given solution and the 1 means that it is present. Many representations

for the chromosome can be applied; both numeric and non-numeric; but

legal operators should be applied to each type of chromosomes [43] [39].

Figure 3.5 summarize the basic steps of each eGA.

40 Chapter 3. Background

3.2.2 eGA Operators

Associated with the genetic algorithms are three operators that are used

in the population for the chromosomes. Operators are the like the follow-

ing [43]:

1. Selection operator: Given that applying the crossover operator in-

creases the number of chromosomes in the population; we need an-

other operator to manage the increase of this size. The selection

operator is used for determining which chromosomes to be passed

to the next generation [39] based on their fitness value [43]. Chro-

mosomes of better fitness value is passed; as they are the most likely

to survive in the next generations.

2. Crossover operator: also referred to as recombination [43]. The in-

put of the crossover process is two chromosomes which are referred

to as the parents, and the output of the process is at least one new

chromosome that holds some of the genes from each parent and

called the offspring. Crossover is applied to random genes of the

parents, and then perform changes in the selected genes either by

swapping locations, or flipping bits, or reordering the sequence to

generate newer offsprings. The crossover probability value is used

to determine the probability and the rate to apply the crossover on a

chromosome. There is a relation between the crossover probability

value and the fitness value of the chromosome [39]. The higher the

fitness if the chromosome means that it is selected and passed to the

3.2. Evolutionary Genetic Algorithms 41

next generation, then the higher the probability that the offsprings

include genes from this chromosome as a parent and maybe have

as well high fitness values, and it is desirable to generate offsprings

with higher fitness values than their parents. It is hard to ensure

this, so in most of the times, the crossover probability value is set to

a higher value in correlation with the fitness value [39].

3. Mutation operator: this operator is used to introduce slight changes

on the chromosomes; either by flipping the value between 0 and 1

as in the binary chromosome for specific alleles, or by swapping the

location of two numbers in an integer chromosome. A constraint on

the mutation process is that the resulting chromosome should be

a valid one and does not violate the representation of the problem

[39]. Mutation contributes to adding more diversity to the solutions

as they are altering the chromosomes in the population in order to

produce newer ones [43].

The mutation process is associated with a variable named muta-

tion probability; which referees to the likelihood of a chromosome

to be mutated. The more complex when the representation if the

problem is more complex; and thus sometimes correction is applied

to check and repair invalid chromosomes resulting from the muta-

tion process which means the increase of the computational time

and complexity which is not desirable. To avoid this the mutation

probability value is being set to be with a minimum value so the

42 Chapter 3. Background

probability of performing mutation and changing chromosome is

in fewer speed [39], but not low to a point we have no new chro-

mosomes on most of the generations so finding good new solutions

becomes harder.

3.3 Evaluating multi-objective algorithms and Hy-

perVolume (HV)

Evaluating the Pareto solutions obtained when running MOEAs is an im-

portant procedure when solving complex multi-objective problems be-

cause the Pareto front has most of the time more than one solution which

we need to compare them to get a solution that is satisfying to the prob-

lem objectives from the decision maker point of view. The obtained solu-

tions are being classified based on two criteria; the closeness of the solu-

tion to the optimal Pareto front where the minimum distance between the

obtained solution and the true Pareto is desired [50] and the nearer the

solution is the better. The second criterion is the diversity of the obtained

solution in the non-dominated front where the increase of the diversity

is desired [2]. Multiple metrics were introduced in literature to evaluate

the obtained solutions; each of which focuses on a specific perspective of

the solution, and according to [17] no unified matrix can be used to eval-

uate the solution in most of the multi-objective problems. In this section,

we discuss the HyperVolume (HV) matrix, as we are going to apply it

3.3. Evaluating multi-objective algorithms and HyperVolume (HV) 43

for measuring the closeness to the optimal Pareto-front of the solutions

obtained in this research.

3.3.1 Hyper Volume metrics

HV is one of the powerful maximization metrics used to evaluate Pareto-

front solutions. The matrix gives a quantitative value that represents the

difference between the size of the objective spaces obtained Pareto-front

and the true Pareto-front [46]. The HV is a powerful matrix as it mea-

sures both the diversity and the closeness of the obtained Pareto-front in

respect with the true Pareto-front [2]

The concept of the matrix depends on the inferior region, and hyper

area value is measured by calculating the space difference between the

inferior region of the true Pareto and the obtained Pareto. The objective

space is occupied by the true Pareto which means a more significant infe-

rior region than the obtained Pareto. The obtained Pareto inferior region

occupies a smaller portion of the objective space. The difference between

the two regions is an indication of how worse the obtained solution, and

for each Pareto solution obtained the HV is calculated and the best solu-

tion is the solution with the maximum HV value [46]. Figure 3.6 repre-

sents HV equation. It states that for each solution i ∈ Q, the hypercube Vi

is calculated in respect to the reference point W which is located on the

true Pareto. The resulting value, i represents the diagonal corners of the

hypercube.

44 Chapter 3. Background

FIGURE 3.6: HV equation [2]

FIGURE 3.7: Visualization for the HV matrix [9]

Figure 3.7 illustrates the visualization of the HV matrix. In this figure

we have two fronts; the red points represents R1 = y1, ..., y6 and the blue

points represents R2 = y7, ..., y10. The light gray area represents the area

dominated by R2 where the blue rectangular represents the cubes domi-

nated by the points y8 and y9 respectively; the HV value shows that the

measure of y8 outperforms the value of y9. The hatched area shows the

cubes dominated by the R1 which are clearly contains points that dom-

inates both y8 and y9 which make R1 more interesting solution as it has

more vacancy between the points y5 and y6 in R1 [9].

3.4. JMetal- framework for developing metaheuristics for

multi-objective optimization problems
45

3.4 JMetal- framework for developing metaheuris-

tics for multi-objective optimization prob-

lems

jMetal is an open source Java-based framework introduced to facilitate re-

searchers in solving multi-objective optimization problems; by empower-

ing them with basic and advanced features to encode optimization prob-

lems as metaheuristics code blocks then applying algorithms and evalu-

ating obtained solutions. The architecture of this framework is designed

under object-oriented principles and a set of design goals to allow code

reuse, abstraction, simplicity, portability and extensibility [18].

According to the developers of the framework; jMetal facilitates not

only solving multi-objective optimization problems, but also the frame-

work is implemented to execute different algorithms in the same pattern

taking into account each algorithm properties and operators. The uni-

fied implementation using the same programming language and other

development features reduce the challenges of comparing different algo-

rithms, as numerical results are not be affected and algorithms’ perfor-

mance is not biased due to differences in implementation. The frame-

work provides fair evaluations for different optimization techniques and

algorithms used. This motivation helped researchers in making use of

existing reliable object-oriented code to solve problems, and reducing the

effect of variations of algorithms implementations on obtained results.

46 Chapter 3. Background

The main Java class under jMetal is the (Algorithm) class. All other

metaheuristics algorithms inherit from this class, and each algorithm im-

plements parameters and operators and execution methods in respect

with its definition. The (Variable) class represents different represen-

tations in metaheuristics including real, binary, binary-real variables to

adapt to different problems. The class (SolutionSet) is responsible for rep-

resenting (Solution) obtained when executing an algorithm. The (Prob-

lem) class, represents the problem under investigation, in which the exe-

cute() method should be implemented. An important class is the (Opera-

tor) class, represents operators to be used in the evolutionary algorithms

including crossover, mutation, and selection. Also, the framework pro-

vides a set of utilities like ranking population and evaluating Solution

Set strength [18]. The framework is extensible, which means someone

can add a costume representation for the variable, and the use of the Ob-

ject) class allows high flexibility to empower the users to implement their

custom classes to represent a specific problem, yet benefit from the power

of the framework features.

47

Chapter 4

Research Methodology And

Experiment Setup

To achieve planned contributions, few experiments are done on three dif-

ferent datasets in order to provide a solid conclusion and answers about

the research questions. These experiments are implemented using jMetal

[18]. This framework provides the ability to run different evolutionary

algorithms which can be used to handle this research problem.

This chapter identifies the methodology used to run this study. This

includes defining the objectives of the optimization of the bug fixing hu-

man resource allocation problem. Additionally, problem solutions are de-

fined, and its structure is designed and mapped to a real planning setup.

The main factor affecting evolutionary algorithms directions and re-

sults is the solution fitness calculations. To build a Pareto optimal solu-

tion set, each solution should have a fitness value for each objective to

determine the non-dominated solutions. Solution fitness calculation for-

mulas are described in details in this chapter.

48 Chapter 4. Research Methodology And Experiment Setup

4.1 Experiment Data Sources

In order to study the SBSE evolutionary algorithms on the bug fixing

human resource allocation, it is required to experiment this problem on

one or more dataset to present the algorithms capabilities and answer the

research questions by analyzing the results. This study provides input

data for the experiment, running different algorithms on data, analyses

results in order to come up with results and provide solutions through

out the suggested framework.

One of the common threads to validity in many studies is the ability

to validate research theory on various types of input data. Addition-

ally, many of the researches are conducted on non-real data designed for

research purposes. Additionally, many researches target open sources

projects data due to the popularity and availability of data. Open source

data is still a valid and significant read data source, but it does not reflect

the situation, constraints, and environment of real commercial projects

in the software engineering areas. A study done by Wright and others

[21] has shown that almost half (49%) of recent empirical studies used

solely open source projects. Such studies come up with general results

and recommendations without extending the results to real projects.

In order to reduce the study validity threats and provide industry

managers confidence in the study and provided framework, three dif-

ferent datasets are used in the experiment. Well operated companies pro-

vide two out of the three datasets. Details about the companies providing

4.1. Experiment Data Sources 49

projects or any other information providing an indication about the com-

panies or the nature of the projects they are working on are eliminated

for confidentiality and business purposes.

4.1.1 Eclipse Project Data

A study done by Muhammad Rezaul Karim approached bug fixing allo-

cation problem using Eclipse bugs dataset [27]. They have studied 2040

bugs from different 19 milestones. The data is divided into two projects:

1. ECLIPSE JDT project [19]: It provides a tool to implement the Java

IDE of Eclipse to support a building of Java applications. This is

the core of Eclipse Java IDE allowing it to provide a workbench of

different components and tools.

2. Eclipse Platform project [20]: It provides a set of services and frame-

works to support component model for Eclipse. It handles all in-

frastructure and resource management

Data and format:

Dataset used by Karim is available online at https://sites.google.

com/site/mrkarim/bug-data.zip?attredirects=0&d=1. It con-

tains Data for both Eclipse platform and JDT for 19 different milestones.

Data includes in this dataset is big due to multiple milestones. In this

dataset, a separate data file is used to describe the developers for each

project (Platform and JDT). Table 4.1 lists the details of developers work-

ing on the JDT project.

https://sites.google.com/site/mrkarim/bug-data.zip?attredirects=0&d=1
https://sites.google.com/site/mrkarim/bug-data.zip?attredirects=0&d=1

50 Chapter 4. Research Methodology And Experiment Setup

Dev# jdt jface core swt ui debug ltk text jdi search compare other hourlywage

1 2 2 2 1 1 0 1.5 2 0 0 4.75 2.25 90

2 1.5 3.5 1.5 2.75 2.5 0 0.75 0 0 2.75 0.25 3 100

3 1.5 2.5 2 2.25 2.25 1.5 0 0 0.75 0 0 2.25 97.5

4 1.5 2.5 2.25 2 2.5 2.25 0 0 2.25 0 0 2.25 93.75

5 2.5 0.75 2 0 0 0 0 2 0 0 0 1.5 112

6 2 2 2.25 2 1.5 0 2.75 2 0 0.75 0 2.25 100.25

7 1.5 1.5 2 1.5 1.5 2.25 0 0 3 0 0 1 87.5

8 1.5 4 1.5 2.5 2.25 0 0 2 0 0 0 1.5 75

9 1.5 3 2.25 3 2.25 0.75 0 0 0 0 0 1 93.75

10 2.25 0.5 2.25 0 0 0 1.5 2 0 0.75 0 2.5 112.5

11 1 2.25 2.25 1.5 2.25 2.75 0 0 1.5 0 0 0 81.25

12 2.25 0.5 2.75 0 0 0 0 0 0 0 0 1 125

13 2.5 0.5 1 0 0 0 0 2 0 0 0 0 87.5

14 2.5 0.5 2 0 0 0 0 2 0 0 0.5 1 100

15 1 2.5 2.25 2 2.25 2.75 0 0 2 0 0 1.5 81.25

16 2 1.5 1.5 1.5 1 0.5 2.5 2 0 0 0 2.5 87.5

TABLE 4.1: Sample of Eclipse Developers Dataset

Table 4.1 describes the details of 16 developers working on the JDT.

Each developer has an id as in the first column and a wage as in the last

columns. Each of the left columns describes the developer relative skill

level on each of the JDT components.

Developer’s skill level is used to find the level of ability of this devel-

oper to fix a specific bug and the time required to fix it. Table 4.2 shows a

sample list of bugs for the Eclipse JDT project. This table list some bugs.

Each bug has a bug number. This number can be used to reference bugs

4.1. Experiment Data Sources 51

CSV files if further information is required for a bug. The second column

represents the developer id which is related to developer id in table 4.1.

The third column lists the effort in hours required to fix each bug for an

average skilled developer. The rest of the table columns are used to de-

scribe the percentage of effort required to be put on each component for

the bug to be fixed.

bug# Dev# Effort jdt jface core swt ui debug ltk text jdi search compare other

68552 16 46.00 0.38 0.26 0.00 0.16 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.01

69020 16 50.67 0.70 0.01 0.12 0.00 0.00 0.00 0.15 0.01 0.00 0.00 0.00 0.00

76099 17 127.33 0.26 0.28 0.09 0.09 0.14 0.00 0.00 0.00 0.00 0.14 0.00 0.00

78450 20 52.33 0.61 0.06 0.13 0.05 0.09 0.00 0.06 0.02 0.00 0.00 0.00 0.00

80784 9 8.00 0.11 0.32 0.05 0.47 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00

92009 2 8.00 0.34 0.33 0.03 0.27 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00

93376 20 20.33 0.89 0.03 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

101453 18 34.67 0.89 0.03 0.06 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

101794 19 8.00 0.86 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.001

TABLE 4.2: Sample of Eclipse Bugs Dataset

These two tables are the main tables to be used for HR allocation for

bug fixing plan. The main point about allocation is that a developer has a

different skill level on each of the project component. The time required

for a developer to fix a bug may be shorter or longer than the estimated

effort based on the bug required skills.

52 Chapter 4. Research Methodology And Experiment Setup

4.1.2 Industrial Data

In order to provide more reliable results, this study targets two datasets

imported from commercial companies bug tracking systems. This pro-

vides a means to target the problem from different perspectives.

In order to unify the process of running optimization algorithms on

different types of datasets, it is essential to unify the data format of the

input sources. The data format of Eclipse open source projects is already

there and is imported from a different study while on the other hand

bugs data in commercial companies are stored in bug tracking systems

like Jira. In order to run the same algorithms code on different datasets,

it is essential that the datasets have the same format. The more natural

solution is to export data from the commercial bug tracking systems into

text files with the same format as the files used for the Eclipse dataset.

Importing data from bug tracking systems and reformatting it in the

required structure is a doable task, but with the selected two sources the

following issues are faced:

• One of the tracking systems has exposed APIs to export bugs. Get-

ting bugs manually is problematic due to the size of the targeted

bugs and pron to manual copy faults. To handle this issue, a scrap-

ing tool is build to read the system web pages and extract the re-

quired information.

• Systems differ in the bug properties they provide. These properties

are directly related to the study objectives. Missing properties leads

4.2. Experiment Setup 53

to missing objectives in some datasets experiments.

4.1.3 Datasets Available Bug Properties

As this study uses three different datasets. It is not necessary that all

available datasets support the same bugs properties. Table 4.3 lists the

supported properties by each of the study datasets.

Commercial Creation Date Severity Priority Customer Reported

Eclipse Dataset 7 3 3 3 7

Industrial Dataset1 3 3 7 3 3

Industrial Dataset2 3 3 3 3 3

TABLE 4.3: Study Datasets Properties

4.2 Experiment Setup

4.2.1 Chromosome Structure

Plan representation to be fed to different study algorithms should be

readable and straightforward by evolutionary algorithms tools. To im-

plement this, a chromosome structure is used to represent the bug as-

signment to developers. Additionally, It is essential to decide the order

in which a certain developer fixes bugs since a developer may not be able

to fix all assigned bugs in the iteration period. Consequently, a sequence

number is defined and attached to the bug number to indicate the order

54 Chapter 4. Research Methodology And Experiment Setup

in which the bug is fixed. Figure 4.1 illustrates a chromosome represen-

tation of a bug fixing plan.

FIGURE 4.1: Experiment Chromosome Structure

The chromosome is divided into n genes representing n bugs in a

backlog. The bugs gens are ordered sequentially in the chromosome.

This order is always preserved withing crossover and mutation opera-

tions. Each gen in the chromosome is divided into two decimal values:

Developer id and a sequence number presenting the order in which the

developer fixes the bug. This number is between 0 and n-1 and should

be unique in any chromosome so no two bugs have the same fix order in

a solution.

4.2.1.1 Chromosome Operations

To define the operations to be valid for bug assignment chromosome, a

limitation is listed on this chromosome first as the following:

1. Developer id is between 0 and the number of developers. This

value may be repeated in more than one gene in the chromosome

4.2. Experiment Setup 55

as it is natural that the developer is assigned more that one bug to

fix.

2. Number of genes is fixed and equals the total number of bugs tar-

geted for optimization (usually the whole system bug backlog).

3. Sequence number must be between 0 and n-1 and must be pre-

sented in each gene. Each value of the sequence number is unique

in the chromosome

Due to the nature and limitation of the suggested chromosome, per-

mutation is the best choice for the chromosome variable type. Unfortu-

nately, this chromosome is not represented by a standard permutation

definition as each gene contains two values (developer and sequence)

where one variable is unique, and the other one is repeatable. Conse-

quently, a custom type of permutation should be defined. For this pur-

pose, this study defines a mixed permutation structure and operations.

Operations for this mixed permutation chromosome is similar to the

standard permutation where permutation operations conditions and lim-

itations should be applied to the sequence value which the developer id

value can be any value within the allowed range. This means that any

operation should preserve the uniqueness of the sequence numbers in

the chromosome.

Crossover for this mixed permutation chromosome is implemented

through a two points crossover with a crossover probability. For each

crossover, the two crossover points are generated randomly.

56 Chapter 4. Research Methodology And Experiment Setup

Mutation operation is a bit tricky in the mixed permutation. A swap

permutation is used for this purpose. In normal swap mutation, two

chromosome genes are swapped. This is used to keep the same set of

genes values in a chromosome (main property of the permutation). In

this study, each gene contains developer ID and sequence number. In

swap operation, the sequence number is preserved to keep uniqueness

where no two bugs can have the same sequence number in any solu-

tion chromosome. On the other hand, to achieve search exploration the

assignment for the bug to a developer should be changed. In order to

achieve this the developer id is randomly regenerated with each muta-

tion.

4.2.2 Multi-Objective Fitness Evaluation

Every bug has an estimated time to fix ETA set by a developer or man-

ager. Usually, this ETA is estimated based on an average skill level. A

developer working on a bug that requires specific skill level on one or

more competency area which she does not own or her skill level at these

competency areas is low spend more time to fix it. The opposite is also

valid where a developer is working on a bug requiring some competency

area skill level, she is expected to fix it in a time equal or less than the

bug ETA in case the developer equivalent skills levels are equal or higher

than average.

To estimate the effort required by a developer to fix a bug i which has

4.2. Experiment Setup 57

time estimation to fix ETA is a function of Bug required competency ar-

eas skill, and user skill per each component. As mathematical represen-

tation, Competency area fix time CaFT for bug i is a function of effort

on this Competency area c effort(CAc, i) and developed d productivity

function prod(d, i, Cac)

CaFT (Cac, i, d) = f(effort(Ca, i) , prod(d, i, Ca)) (4.1)

The time required to fix a bug i by developer d is FT (i, d) is the sum of

time required to fixed each of the competency areas by the developer d.

Developer having low skill level on any of the competency area impacts

the total time required to fix the bug

FT (i, d) =
c∑

Ca=1

CaFT (Cac, i, d) (4.2)

A solution includes bugs distributed among developers trying to op-

timize different objectives in an iteration time period and achieving the

least possible time fixing all bugs with the given resources. The bugs

in the solution to be fixed by a developer should be in order. Each bug

assignment is accompanied by a sequence number sn representing the

order. Equation 4.3 shows the order of bugs to be fixed by a developer

devd Bugs List = {Bs1 , Bs2Bsn} (4.3)

58 Chapter 4. Research Methodology And Experiment Setup

A developer can fix a number of bugs on the planned bugs list of the

solution during iteration time Tit. This can be calculated by summing up

the bugs fix time sequentially (FT (i, d)) till adding one more bug exceeds

the iteration period.

BLit(d) = {Bs1 , Bs2 Bst}

where
t∑

j=1

FT (i, d)) ≤ Tit (4.4)

Based on iteration time and bugs assigned to each developer, Total

bugs fixed in an iteration BF ixedit is defined as a union of bugs assigned

to each developer.

BF ixedit = ∪Dd=1 BLit(d) (4.5)

The bug list planned to be fixed by all the developers is used to cal-

culate the fitness of the different objectives of this study. Competition is

obvious between the first objective and the other, where high high prior-

ity may be time-consuming, hence fixing more on high priority results in

a low number of total fixed bugs during the iteration.

Three out of four objectives in this study are calculated within the

iteration time frame. This applies to the total number of bugs fixed in the

iteration time line, the the total number of fixed high bugs in addition

to the aging factor which is calculated based on the bugs fixed in the

4.2. Experiment Setup 59

iteration. The forth objective is calculated based on the bugs that are

not included in the iteration. This time can be calculated by getting the

maximum of the sum of bug fix time for each developer as expressed in

equation 4.7

All Bugs Assigned to developer

BL(d) = {Bs1 , Bs2 Bsk}

where Bsk is the K bug assigned to developer (4.6)

All Bug Fix time TFT = max(BL(d)) (4.7)

Objectives Values:

TABLE 4.4: Study Objectives Variables

Objective Optimization

Number of fixed bugs Max

Number of high Priority bugs Max

Number of Aging bugs Max

Total time to fix all bugs Min

60 Chapter 4. Research Methodology And Experiment Setup

4.2.3 Algorithms and jMetal Study

jMetal framework [18] is used to build and run the study for both three

and four objectives. The following settings are shown in table 4.5 are used

for the different algorithms used in the study. Default jMetal configura-

tion is used as tuning the algorithms for better results is not the purpose

of this study.

Parameter Value

Population size 100

Crossover type Two Point

Crossover probability 0.9

Mutation type Swap

Mutation probability 0.01

Independent runs 30

Max Evaluations 100,000

TABLE 4.5: jMetal Experiment Configuration

In this study three algorithms are used: 1) NSGA-II 2) MOCell 3)

IBEA. The same parameter values are used for the three algorithms. All

the runs used the same four objectives. The comparison part of this study

is used to pick the best algorithm used to handle this software engineer-

ing problem.

4.2. Experiment Setup 61

4.2.4 Human vs. Algorithm Setup

The purpose of this experiment is to present the efficiency NSGA-II for

building a bug fixing iteration plan. This is achieved by comparing the

algorithm generated solutions with solutions created manually by senior

level developers and managers volunteering from different companies

working in the software development industry.

Volunteering for the experiment was requested through different Face-

book and Linkedin groups involved in the software development indus-

try. Selection of volunteers was based on the following criteria:

1. Candidate is playing management or senior development role at his

career

2. Has 3+ years of related work experience

3. Involved in agile planning and estimation

The dataset of the experiment is constructed of 60 bugs with various

properties and characteristics. Bugs in this dataset are collected from 5

project components: Widgets, Dashboard, Spring, Messaging and Database.

Each bug in this dataset provides required time to fix and percentage

of effort required on each of the project components in addition to prior-

ity and days since the bug was created (used for aging factor objective).

Another set of six developers are provided. Those developers are the ex-

pected resources to fix the bugs based on the solutions to be created. Each

developer has a skill level on each of the project components. Skills are

62 Chapter 4. Research Methodology And Experiment Setup

divided into levels from 1 to 5 with 5 representing the highest skill on a

component.

To help volunteers in matching between bugs and developers, a spe-

cial application is built for this purpose. The application is hosted on

http://plan4bugs.me. Using this application user can see a backlog

of 60 bugs. Hovering on each bug provides bugs properties. The middle

part presents a table used to construct a plan. A vertical line is used as a

border for the one-week iteration. For this plan, 6 developers are used to

fix all bugs. Hovering on each developer provides the skill level of this

developer on each of the project components.

FIGURE 4.2: Experiment UI Tool

The experiment is about bug triage among the six developers. This is

achieved by dragging the bug button to the right developer, taking into

account the order of bugs to be fixed by each developer. Tooltips on bugs

and developer list help the user in bug triage based on the bug required

http://plan4bugs.me

4.2. Experiment Setup 63

Bug# Effort Widgets Dashboard Spring Messaging Database Sevirity Priority Days
1 40 0.45 0 0 0 0.55 4 4 611
2 12 0.3 0.3 0.2 0.2 0 1 5 531
3 15 0 0 0.2 0.3 0.5 1 5 531
4 37 0 0.2 0.2 0.1 0.5 5 4 630
5 35 0.1 0 0.5 0 0.4 5 4 620
6 33 0.6 0 0 0 0.4 4 5 591
7 30 0.05 0.8 0.1 0 0.05 3 4 576
8 24 0.2 0 0 0 0.8 4 5 470
9 8 0 0 0 0.5 0.5 2 4 460
10 12 0 0 0.45 0.1 0.45 3 5 434
11 39 0.2 0.2 0 0 0.6 5 5 430
12 37 0.2 0.1 0.55 0 0.15 1 5 630
13 27 0.2 0.7 0.1 0 0 5 4 520
14 34 0 0.6 0 0 0.4 3 4 612
15 28 0.2 0 0 0.4 0.4 3 5 593
16 29 0.2 0.45 0.2 0 0.15 4 5 672
17 14 0.2 0.2 0.3 0.3 0 3 4 355
18 26 0 0 0.6 0.4 0 4 5 434
19 14 0.3 0 0.7 0 0 1 3 330
20 9 0.45 0 0.25 0 0.3 3 4 312
21 9 0 0 0.2 0.8 0 3 4 278
22 25 0 0 0 0.3 0.7 2 4 230
23 29 0 0 0.6 0.4 0 4 3 420
24 8 0.6 0 0 0.4 0 1 3 220
25 14 0 0.4 0.2 0 0.4 1 3 203
26 33 0.25 0.1 0.65 0 0 4 1 165
27 14 0.9 0.1 0 0 0 3 2 160
28 8 0 0 0.4 0.4 0.2 1 3 150
29 12 0 0 0 0.8 0.2 2 2 144
30 17 0.55 0 0 0 0.45 2 3 140
31 14 0 0 0 0.6 0.4 3 3 130
32 12 0.2 0 0 0 0.8 2 4 130
33 19 0.45 0 0 0.25 0.3 4 3 129
34 22 0.3 0.4 0.3 0 0 3 4 120
35 33 0 0.2 0.2 0.2 0.4 4 4 119
36 33 0 0 0.6 0 0.4 5 3 98
37 6 0.3 0 0 0.4 0.3 2 4 96
38 35 0 0 0 0 1 4 1 93
39 4 0 0.3 0 0 0.7 2 3 88
40 12 0.3 0.5 0 0 0.2 2 3 85
41 14 0 0 0.5 0 0.5 2 3 85
42 8 0.4 0.4 0 0.2 0 2 3 78
43 33 0.3 0.3 0 0.3 0.1 4 1 76
44 24 0.85 0.15 0 0 0 4 4 76
45 11 0 0 0.8 0.2 0 2 3 67
46 12 0.2 0.6 0.1 0 0.1 1 4 58
47 33 0 0.2 0 0.2 0.6 5 1 56
48 5 0 0.3 0.7 0 0 3 3 55
49 13 0 0 0 1 0 2 3 54
50 25 0.4 0 0 0 0.6 5 3 49
51 29 0 0 0 0.6 0.4 4 2 45
52 6 0.9 0.1 0 0 0 1 2 44
53 18 0 0 0.2 0.3 0.5 1 3 44
54 19 0 0 0 0.4 0.6 3 2 40
55 4 0.4 0.6 0 0 0 3 2 40
56 30 0.3 0.5 0.2 0 0 4 3 38
57 5 0.6 0.2 0.2 0 0 2 3 35
58 29 0 0.3 0.45 0 0.25 5 1 33
59 33 0.6 0 0 0 0.4 4 2 33
60 25 0.1 0.7 0.1 0 0.1 1 2 32

TABLE 4.6: Experiment Bugs Details

64 Chapter 4. Research Methodology And Experiment Setup

Dev Widgets Dashboard Spring Messaging Database

1 5 4 2 4 3

2 3 5 1 1 2

3 1 2 4 5 2

4 2 1 3 1 4

5 1 1 2 2 1

6 1 1 1 2 2

TABLE 4.7: Experiment Developers Details

skills and developer skills. For ease of use, the application calculates the

time required to fix a bug by a developer. Hence, time to fix a bug differs

based on the developer fixing it. This is reflected graphically on the UI,

where the width of the bug bar in the plan (similar to a Gantt chart) dif-

fers and present bug time length compared to the iteration length. The

vertical line presents the iteration time border. All bugs laying on or after

this border is fixed after in the following iterations and hence they are

used to calculate the time to fix all bugs objective.

The lower part of the application is a live calculation of the achieved

objectives. Upon each bug drag/drop, these four objectives are recalcu-

lated. These values act as guidelines for the user to optimize the plan. A

++ sign is added beside objectives to be maximized while — sign is used

to indicated an objective to be minimized.

4.3. Experiment Assumptions 65

4.3 Experiment Assumptions

1. One developer per bug: This study put an assumption that each

bug is assigned to one developer. This assumption is a real one as it

is the way managed in industry [6].

2. competencies are set per component: Each bug requires a set of

competency areas. These values should be set per bug as done in

the eclipse dataset, but it is not available in the industrial data. For

this study, these values are set per software module assuming that

any bug in a module requires the same competency areas as the

module it belongs to.

3. In this thesis Testers effort is not included in the iteration planning.

It is mainly about developers plan. Testers work with developers

during and after the iteration time. The time they spent of bug fix-

ing does not affect the planning activity, so they are excluded from

this study.

66

Chapter 5

Experiments Results and

Analysis

5.1 Algorithm Comparison

The purpose of this experiment is to present the use of the HR resource

allocation in the meta-heuristic domain. The experiment is indented to

achieve two goals:

• Get Pareto optimal solutions for bug assignment of Eclipse JDT and

platform milestones in addition to other industrial datasets. This

is done by running meta-heuristic algorithms of these milestones

bugs assigning them to a set of developers.

• Compare between three different algorithms to handle this prob-

lem. These algorithms are IBEA, MoCell, and NSGAII.

For the purpose of this experiment, the sets of data as shown in ta-

ble 5.1 are used. The developers set is fixed on 16 developer where the

5.1. Algorithm Comparison 67

number of bugs varies in each milestone bugs. Default configurations

are used to run the algorithms without any tuning. All algorithms ran

for 100,000 evaluation for 30 runs.

Number of Bugs Number of Developers

JDTMilestoneM2 82 16

JDTMilestoneM3 142 16

JDTMilestoneM4 244 16

JDTMilestoneM5 259 16

Industrial Dataset1 235 16

Industrial Dataset2 243 16

TABLE 5.1: Experiment Datasets Details

The experiment was run using jMetal4.5. The chromosome designed

in section 4.2.1 is implemented using a custom permutation called Mixed

Permutation. Both two-point permutation crossover and swap mutation

are extended to support a permutation containing both developer id and

bug order.

To measure the quality of the produced Pareto front of each algorithm,

HV quality indicator is used for this purpose. HV is calculated for each

run on each algorithm. Hence, for 30 executed runs, each algorithm has

30 value for HV. jMetal experiment is used to collect these values and

calculate the HV for each algorithm. This is repeated for each targeted

milestones bugs. Table 5.2 displays the mean HV values.

68 Chapter 5. Experiments Results and Analysis

NSGAII IBEA MoCell

JDTMilestoneM2 4.91e− 01 8.03e− 02 4.81e− 01

JDTMilestoneM3 8.68e− 01 5.98e− 01 8.55e− 01

JDTMilestoneM4 8.09e− 01 5.85e− 01 7.69e− 01

JDTMilestoneM5 6.30e− 01 4.91e− 01 7.04e− 01

Industrial Dataset1 4.49e− 01 4.42e− 01 4.46e− 01

Industrial Dataset2 2.31e− 01 1.95e− 01 7.04e− 01

TABLE 5.2: HV. Mean values

Table 5.2 shows that IBEA always has the least HV in all experiments.

The difference between the IBEA and NSGAII and MoCell is always sig-

nificant. While both NSGAII and MoCell have close values. In milestone

2 to NSGAII slightly outperforms MoCell while it is the opposite in mile-

stone 5. Consequently, it is obvious that both NSGAII and MoCell are

having close performance on all provided datasets. The difference in the

results does not make any preference for any algorithms. Further exper-

imentation is required on this aspect with different sizes of datasets and

different numbers of developers to come up with a more solid conclusion.

For a better graphical representations of the results, plot-box charts

are used to compare HV range and mean for each dataset. This is illus-

trated in Figure 5.1, Figure 5.7, Figure 5.8, Figure 5.9and Figure 5.9.

5.1. Algorithm Comparison 69

FIGURE 5.1: HV Quality Indicators for JDTMilestoneM2

FIGURE 5.2: HV Quality Indicators for JDTMilestoneM3

Industrial data showed fewer differences between the different algo-

rithm use for handling planning problem. These differences are not sig-

nificant. Additionally, industrial data comply with open source data in

regards to the fact the NSGAII slightly outperforms the other algorithm

for this problem. No differences are found between open source and in-

dustrial data conclusion, but this including industrial data added more

credibility to the results as having different sources for data makes the

70 Chapter 5. Experiments Results and Analysis

FIGURE 5.3: HV Quality Indicators for JDTMilestoneM4

FIGURE 5.4: HV Quality Indicators for JDTMilestoneM5

FIGURE 5.5: HV Quality Indicators for Industrial Dataset 1

experiment more realistic and more generalized.

Based on the above results HV measurements for each of the datasets

5.1. Algorithm Comparison 71

FIGURE 5.6: HV Quality Indicators for Industrial Dataset 2

on each algorithm, these algorithms can be ranked. The Ranking of al-

gorithms is calculated based on Friedman statistic considering reduction

performance (distributed according to chi-square with 2 degrees of free-

dom: 6.5). NSGA-II has the highest ranking of 2.75 followed by MoCell

with a ranking of 2.25 while IBEA. Based o these results, the rest of the

experiment is run based on NSGA-II which achieves a higher score, and

hence it is considered as the best choice for optimization of bug resource

allocation problem.

Algorithm Ranking

NSGAII 2.75

MOCell 2.25

IBEA 1.0

TABLE 5.3: Average Rankings of the algorithms

72 Chapter 5. Experiments Results and Analysis

5.1.1 Algorithm Minimum Run Time

Based on section 5.1, it is obvious that NSGA-II is the best algorithm out

of the three experimented algorithms. The second goal is to determine

the minimum time to get near-optimal solutions for NSGA-II optimiza-

tion. To do so, NSGA-II can be run on the datasets with predefined stop-

ping time. This approach is used to collect data for the algorithm running

for incremental periods.

To determine the minimum time required to run the NSGA-II algo-

rithm on a dataset and get a close to optional Pareto of solutions. The

optimization algorithm is run over three datasets (JDTMilestoneM2, JDT-

MilestoneM4, and JDTMilestoneM5). The run is paused at intervals be-

tween zero and 300 sec and measured HV on each pause. It is repeated

for 5 runs on each dataset. Then estimated the mean HV values at each

time interval. HV mean values over time for the five datasets. HV values

over time are collected in Table 5.4. This table lists the median values for

5 runs on each dataset. The results is illustrated in figure 5.7, figure 5.8,

figure 5.9 , figure 5.10 and figure 5.11.

Based on the HV over time results for the three datasets, it is evident

that HV increases by time till it reaches a steady state where additional

time running the algorithm does not add significance to the HV values.

The time when the HV converge to a steady state value differs based on

the dataset time. For this study and the following experiment, the 150 sec

is considered as the convergence point as at 150 sec the HV value is very

close to the optimal value.

5.1. Algorithm Comparison 73

Time MilestoneM2 MilestoneM4 MilestoneM5 Dataset1 Dataset2

5 0.302 0 0 0.26 0

10 0.376 0.013 0 0.301 0

15 0.406 0.029 0.004 0.341 0.01

20 0.419 0.05 0.016 0.33 0.021

25 0.432 0.079 0.031 0.376 0.046

30 0.434 0.099 0.055 0.401 0.072

35 0.437 0.137 0.097 0.446 0.094

40 0.452 0.158 0.132 0.436 0.107

45 0.457 0.205 0.157 0.44 0.112

50 0.453 0.229 0.165 0.427 0.117

55 0.458 0.274 0.185 0.442 0.124

60 0.463 0.3 0.216 0.43 0.132

65 0.462 0.329 0.247 0.425 0.144

70 0.479 0.365 0.271 0.425 0.149

80 0.481 0.422 0.323 0.433 0.158

90 0.481 0.479 0.378 0.428 0.162

100 0.486 0.558 0.419 0.431 0.19

120 0.486 0.639 0.492 0.431 0.235

150 0.486 0.769 0.558 0.431 0.236

180 0.486 0.793 0.598 0.431 0.235

210 0.486 0.793 0.598 0.431 0.244

240 0.486 0.793 0.598 0.431 0.241

300 0.486 0.793 0.598 0.431 0.243

TABLE 5.4: HV convergence overtime for diffirent datasets

74 Chapter 5. Experiments Results and Analysis

FIGURE 5.7: Run Time vs HV for JDTMilestoneM2

FIGURE 5.8: Run Time vs HV for JDTMilestoneM4

5.1. Algorithm Comparison 75

FIGURE 5.9: Run Time vs HV for JDTMilestoneM5

FIGURE 5.10: Run Time vs HV for Industrial Dataset1

76 Chapter 5. Experiments Results and Analysis

FIGURE 5.11: Run Time vs HV for Industrial dataset2

5.1.2 Human vs. SBSE Experiment

In this part, 31 volunteers participated in building plans for assigning 60

bugs to 6 developers in 1-week iteration period. This was done in 2 lab

sessions for 18 volunteers, in addition to 13 online volunteers. Orienta-

tion was given to participants, and they were asked to build a plan using

the application. Each user was allowed to submit up to 5 solutions. The

setup was explained in section 4.2.4.

The time it took each user to build and submit 5 different plans for

these 60 bugs using the application was between 45 to 67 minutes for

61% (19 users), while 26% (8 users) were able to complete it between 30

to 45 minutes. These time values are considered quite long taking into

account the size of the backlog (60 bugs) and the ease of the experiment

application. In comparison, building a set of non-dominated solutions

using NSGA-II only takes 150 seconds.

Solutions collected from experiment volunteers were 146 solutions.

5.1. Algorithm Comparison 77

All these solutions are gathered in one dataset and removed out all dom-

inated solutions to end up with 38 non-dominated solutions. These fil-

tered solutions represent a Pareto front for human-made solutions. This

human-made Pareto front is compared against NSGA-II Pareto front.

NSGA-II was run 30 times on the 60-bugs dataset. Each run took 150

sec to complete. This has produced 30 typical near-optimal Pareto fronts

of 100 solutions each. For comparison with the human-made Pareto, one

NSGA-II Pareto front with the closest HV value to the mean of the 30 HV

values is selected. Table 5 shows the HV quality indicator for the Human-

made Pareto in addition to the mean value of HV of the 30 runs of NSGA-

II. This shows in a definite way how NSGA-II is superior to the human

in building a bug fixing iteration optimizing the 4 study objectives.

Result Source HV (Mean Value)

Human-made 0.358344

NSGA-II runs 0.427252

TABLE 5.5: Hypervolume for NSGA-II vs Human-made
Paretos

As the optimization problem in this study is a 4-objective problem, it

is not possible to compare 4d Pareto graphs. To illustrate the difference

between the two approaches and show how NSGA-II outperforms the

human approach, the 4d Pareto is projected into 3 different illustrations.

Each figure shows the first objective (total bugs covered in the iteration)

78 Chapter 5. Experiments Results and Analysis

in the x-axis, while another objective is drawn on the y-axis. Those re-

lationships are shown in Figure 5.12, Figure 5.13 and Figure 5.17 respec-

tively. In these charts, blue circle dots represent the NSGA-II results while

the yellow star dots represent the human-generated results.

FIGURE 5.12: Total Bugs Vs Priority 2d Projection

FIGURE 5.13: Total Bugs Vs Time 2d Projection

5.1. Algorithm Comparison 79

FIGURE 5.14: Total Bugs Vs Aging 2d Projection

FIGURE 5.15: Priority Bugs Vs Aging Factor 2d Projection

Figure 5.13 and Figure 5.17 clearly show the superior results of NSGA-

II. In human based planning, volunteers were hardly looking into long-

term objectives such as time. The same applies to the aging factor where

NSGA-II can handle aging factor much better as we can notice the higher

NSGA-II values while human results for aging factor are significantly

lower.

On the other hand, Figure 5.12 shows that human managers achieved

80 Chapter 5. Experiments Results and Analysis

FIGURE 5.16: Priority Bugs Vs Time left to Fix all bugs 2d
Projection

FIGURE 5.17: Time left to Fix all bugs Vs Aging Factor 2d
Projection

results competitive to NSGA-II even though NSGA-II results are still higher.

This shows that iteration planners tend to look at the total number and

priority of bugs while paying less attention to other objectives, even though

the orientation covered all 4 objectives before the experiment.

5.2. Framework Planner Advisor UI Tools 81

5.2 Framework Planner Advisor UI Tools

5.2.1 Solutions Radar Charts

Based on the above results, it is obvious that our bug iteration plan-

ner meta-heuristics approach has a significant help in providing decision

makers with a set of solution they can select from in order to come up

with a plan that achieves the best optimal values on the four objectives.

The results are displayed in a jMetal FUN file. The FUN file represents

the objective values for each solution in the Pareto Optimal generated

by running the meta-heuristics algorithm [a]ltnebro2013jmetal. Table 5.6

represents a sample for the fun file.

Reading the FUN file is not trivial and selecting solutions out of the

jMetal output is not easy and wont be practical. Many way can be used to

simplify the process of selecting few solutions. A good solution to handle

the complexity of reading the Pareto results and comparing objectives is

Radar charts. At this stage, with each run a radar chart is generated by

the framework, selecting 4 different solutions from the FUN to ease the

selection process on the decision maker. This chart contains an interactive

legend where the user can add or remove a solution by clicking on its

legend. A sample of such interactive radar chart can be shown on http:

//plan4bugs.me/radar.html

http://plan4bugs.me/radar.html
http://plan4bugs.me/radar.html

82 Chapter 5. Experiments Results and Analysis

FIGURE 5.18: Solutions Radar Chart

5.2. Framework Planner Advisor UI Tools 83

Bugs Priority Aging Factor Time
-25.0 -11.0 -7299.0 329.0
-34.0 -24.0 -8892.0 381.0
-38.0 -14.0 -13015.0 427.0
-44.0 -17.0 -11827.0 441.0
-36.0 -18.0 -12109.0 466.0
-25.0 -14.0 -6361.0 331.0
-19.0 -10.0 -10043.0 340.0
-26.0 -15.0 -6881.0 332.0
-29.0 -21.0 -7118.0 358.0
-43.0 -16.0 -12336.0 424.0
-37.0 -23.0 -9342.0 386.0
-40.0 -12.0 -11397.0 368.0
-21.0 -12.0 -9542.0 339.0
-28.0 -19.0 -8034.0 351.0
-31.0 -23.0 -7989.0 370.0
-32.0 -24.0 -7871.0 379.0
-41.0 -21.0 -9514.0 380.0
-34.0 -19.0 -11072.0 451.0
-24.0 -17.0 -9147.0 365.0
-35.0 -18.0 -11979.0 460.0
-20.0 -11.0 -9744.0 340.0
-22.0 -13.0 -9451.0 349.0
-42.0 -20.0 -10047.0 379.0
-36.0 -10.0 -11266.0 366.0

TABLE 5.6: Partial Sample of a jMetal FUN File

84 Chapter 5. Experiments Results and Analysis

5.2.2 Gannt Plan Chart

As the framework is using jMetal, results for solutions in jMetal are stored

in a VAR file as shown in figure 5.19. This file is hard to read even for

jMetal experts. Each field of the solution represents developer, order

number and bug number consequently. This raises the need to build a

UI tool to present a solution (plan).

FIGURE 5.19: Record

This framework provides a utility to convert jMetal solution into an

HTML Gannt chart for this solution. This helps the plan decision maker

to visually as shown in figure 5.20

FIGURE 5.20: A Solution Gannt Chart

5.3. Results Impact and Use 85

5.3 Results Impact and Use

This study provide a detailed analysis for using meta-heuristic algorithms

to solve resource allocation for a bug fixing iteration. A framework is

suggested to handle solving the optimization problem of the planning.

Throughout this study, experiments are conducted to present the advan-

tages of using this framework. These advantages have direct impact on

industrial environment.

Putting this framework in industrial use does not require significant

efforts but it requires some changes on the way bugs are handled. The

following list describes the requirements to put the framework in use:

1. Bugs backlog should provide the following proprieties in order to

be able to extract and build the framework algorithm chromosome:

(a) Bug Creation time: to handle the aging fitness factor

(b) Bug priority and/or severity required to calculated the num-

ber of high priority/severity bugs in the target iteration plan

(c) Estimated time to fix the bug

(d) Product components: used to divide bug required effort per

component

(e) Percentage of effort per component required to fix the bug.

This is the major information which is missing in most bug

repositories while it is essential for the framework. AI may

86 Chapter 5. Experiments Results and Analysis

be put in use to provide effort percentage per component but

still in the worst case it can be provided manually per bug

2. For each developer, skill set should be provided based on the prod-

uct components.

3. Bug repository and management tool should support APIs to ex-

tract bugs and developers details. Additionally more APIs should

be provided to set bug assignment and building an iteration plan

The main effort is to put extract the data from the bug repository in

the format provided in table 4.1 and table 4.2. Providing such data is

sufficient in order to run the framework. The minimum time required

for run is 150 sec but this period may be extended in case of repositories

of sizes larger than the data sets targeted in this study. This study pro-

vides time analysis as illustrated in figures 5.7 to figure 5.11. These charts

shows that the 150 sec time is enough to get a stable solution for different

data sets sizes.

The experiment that is conducted to compare human made plan with

the framework generated plans shows the need for such framework where

the framework was able to achieve better results than manual planning.

Based of the analysis of the results, it is clear that human does not pay at-

tention to all objectives of the plan. They do focus on the straightforward

objectives such as number of bugs achieved. This framework makes a

5.3. Results Impact and Use 87

balance and make it easy for the managers to select solutions with opti-

mal values. For example, the best value of aging factor achieved by hu-

man was 11.8k while the framework was able to achieve 13k aging factor

fitness. The same applies for time required to fix all bugs where based

on human plans the minimum time to fix all bugs was more than 600

hours while it was around 470 hours using the framework. This shows

the importance of the framework to achieve better results

88

Chapter 6

Conclusion And Future Work

6.1 Threats to Validity

In this section, we discuss possible threats to construct, external, and con-

clusion validity.

Construct validity threats are concerned with the chosen objectives

and the way they are calculated. We relied on measurements reported in

public datasets that were accepted and used by the research community.

We defined our objectives differently because we adapted them accord-

ing to the agile iteration process, while previous studies only considered

fixed budget and resources.

External validity threats are related to the applicability and generaliz-

ability of the results. While this study is confined to the bug-developer

assignment in the agile iteration scenario, it has many similarities to other

problems in search-based software engineering (SBSE), where many ob-

jectives are competing against each other, and managers are faced with

6.2. Conclusion 89

large and complex decision spaces that render manual assignments im-

practical and inefficient.

Threats to conclusion validity can arise from the intrinsic randomness

within the meta-heuristic algorithms, as well as the variations in human

performance when placed under experiment. On the algorithm side, we

made sure to run the algorithms 30 times on each instance of the problem

and utilized the Friedman test to rank the algorithms statistically. On the

human side, we obtained bug iteration plans from 31 experienced man-

agers and senior developers, each providing 5 different attempts, and

those solutions were then filtered down to 38 non-dominated solutions

that we compared with the automated results. This is how we ensured

the soundness of conclusions.

6.2 Conclusion

The importance of this study is presented through providing an automa-

tion framework for a bug fixing iteration planning which can provide

managers and planners with a Pareto front of solutions to select from

based on their preferences of objectives while making sure any selected

solution is optimal and non-dominated. To get the best optimization for

this software engineering problem, we have tested the problem on three

different well known meta-heuristic algorithms over various dataset sizes.

NSGA-II outperformed both IBEA and MoCell. Additionally, Minimum

time to produce a near to optimal Pareto was extracted by running the

90 Chapter 6. Conclusion And Future Work

optimization over time and measuring the hypervolume quality indica-

tor over time. Planning bug fixing iteration through SBSE is a way more

effective than manual planning. This is proven through an experiment

of comparing solutions built by NSGA-II running for 150 seconds with

solutions made by senior developers and managers with experience with

agile planning. Both NSGA-II and human run this experiment on the

same dataset showed that all human-made solutions were less optimal

than the SBSE approach. Additionally, it showed that humans tend to

concentrate on one or two straightforward and essential objectives while

paying less attention to other objectives which results in less optimal so-

lutions.

6.3 Difficulties and Obstacles

The main difficulty faced in this study is the ability to import data from

industrial bug repositories. This is due to the fact that these systems do

not provide the ability to import data through proper APIs. To overcome

this issue, Repositories Web pages are used to scrape the right data and

format it in a proper way to be used by the thesis algorithms.

Another difficulty faced during the thesis is the amount of computa-

tion power required to run experimentation. This research depends on

different datasets with different data sources. Additionally, algorithms

have to be tuned and upon any bug, fix experimentation should be re-

peated. Also to mention that each experiment was executed for at least

6.4. Future Work 91

30 runs. To handle such need for computational power, AWS cloud was

used to run the work in parallel where many instances of the experiments

were run concurrently and data were collected afterward.

6.4 Future Work

6.4.1 Man in the loop support

In all experiments run in this thesis, the results were always represented

as a Pareto front of non-dominated solutions. Based on jMetal settings,

the population size was 100 solution and based on the high possible so-

lutions, a Pareto front was always a set of 100 non-dominated solutions.

These solutions represent the best solutions from where a manager or

planner can select solutions based on their preferences while preserving

the fact of being near to optimal.

In order to reduce the choices for the plan selector, the framework

provides the users with five solutions. Four solutions are picked from the

edges of the four objectives while the fifth solution is selected around the

mean values of all objectives. The Framework provides these solutions as

radar chart which is suitable for presenting the 4 objectives on a 2d chart

as shown in figure 5.18. Another helpful output was a Gantt chart for a

selected solution as illustrated in figure 5.20. This gives the manager a

GUI sight to the bug assignment among developers.

92 Chapter 6. Conclusion And Future Work

Both Gantt and radar charts are so helpful outputs of the framework,

but they keep the manager with few solutions to select for. Moreover,

a manager may not be satisfied with the provided solutions and prefers

other solutions fulfilling some criteria or objectives. This can be achieved

by giving the manager the ability to influence the algorithm flow while it

is running. This approach is called "man in the loop" approach.

Man in the loop could be very helpful in bug fixing planning. This

can be achieved by pausing the algorithm execution each n seconds to

allow the user to set some preferences. One good preference is fixing a

bug assignment to a specific developer. This should not be harmful as

assigning a bug to this developer is already one of out optimized solu-

tions. The algorithm execution is resumed after one or bug assignments

is fixed. After few iterations, most bugs assignments will be fixed with

limited number of Pareto solutions. This approach is supposed to results

in one or few solutions which are mostly human-directed while at the

same time are near optimal.

In order to investigate human in the loop approach, it is required to

compare the quality of solutions that result from normal optimization

without any human intervention with main in the loop approach. If the

normal Pareto does not dominate the man in the loop results and it has

equal or better quality indicator, it can be considered a significant contri-

bution to the optimization problem.

6.4. Future Work 93

6.4.2 Integration with Management tools

This research proves the significant help that SBSE can provide for man-

agers or planners to build a bug fixing iteration. This thesis has proved

this by using different datasets from open source and industrial projects.

This contribution raises the need to integrate this framework with mod-

ern management and agile tool in order to automate the whole process.

The integration between management tools and my framework can

be divided into three parts:

1. Data expert from management tool. This can be achieved by us-

ing tool API’s to get bugs and developers information and build

the main files for bugs and developers that are compatible with the

framework.

2. Running the framework and getting a Pareto front of a solution.

Provide the users with a UI interface to pick a solution of the Pareto.

3. Import the selected solution into the management tools. This can

be achieved using the management tools provided APIs.

94

Bibliography

[1] Jesús S Aguilar-Ruiz et al. “An evolutionary approach to estimating

software development projects”. In: Information and Software Tech-

nology 43.14 (2001), pp. 875–882.

[2] Abdel Rahman Ali M Ahmed, Mohamed H Gadallah, and Hes-

hamA Hegazi. “Multi-Objective Optimization Indices: A Compar-

ative Analysis”. In: Australian Journal of Basic and Applied Sciences

8.4 (2016), pp. 1–12.

[3] Syed Nadeem Ahsan, Javed Ferzund, and Franz Wotawa. “Auto-

matic software bug triage system (bts) based on latent semantic

indexing and support vector machine”. In: Software Engineering Ad-

vances, 2009. ICSEA’09. Fourth International Conference on. IEEE. 2009,

pp. 216–221.

[4] John Anvik. “Automating bug report assignment”. In: Proceedings

of the 28th international conference on Software engineering. ACM. 2006,

pp. 937–940.

[5] John Anvik, Lyndon Hiew, and Gail C Murphy. “Who should fix

this bug?” In: Proceedings of the 28th international conference on Soft-

ware engineering. ACM. 2006, pp. 361–370.

BIBLIOGRAPHY 95

[6] John Anvik, Lyndon Hiew, and Gail C Murphy. “Who should fix

this bug?” In: Proceedings of the 28th international conference on Soft-

ware engineering. ACM. 2006, pp. 361–370.

[7] Qinghai Bai. “Analysis of particle swarm optimization algorithm”.

In: Computer and information science 3.1 (2010), p. 180.

[8] Victor Basili et al. “Understanding and predicting the process of

software maintenance release”. In: Proceedings of the 18th interna-

tional conference on Software engineering. IEEE Computer Society. 1996,

pp. 464–474.

[9] Nicola Beume, Boris Naujoks, and Michael Emmerich. “SMS-EMOA:

Multiobjective selection based on dominated hypervolume”. In: Eu-

ropean Journal of Operational Research 181.3 (2007), pp. 1653–1669.

[10] Pamela Bhattacharya, Iulian Neamtiu, and Christian R Shelton. “Au-

tomated, highly-accurate, bug assignment using machine learning

and tossing graphs”. In: Journal of Systems and Software 85.10 (2012),

pp. 2275–2292.

[11] Nazia Bibi, Ali Ahsan, and Zeeshan Anwar. “Project resource al-

location optimization using search based software engineering—A

framework”. In: Digital Information Management (ICDIM), 2014 Ninth

International Conference on. IEEE. 2014, pp. 226–229.

[12] Nazia Bibi, Zeeshan Anwar, and Ali Ahsan. “Comparison of Search-

Based Software Engineering Algorithms for Resource Allocation

96 BIBLIOGRAPHY

Optimization”. In: Journal of Intelligent Systems 25.4 (2016), pp. 629–

642.

[13] Barry Boehm, Chris Abts, and Sunita Chulani. “Software develop-

ment cost estimation approaches—A survey”. In: Annals of software

engineering 10.1-4 (2000), pp. 177–205.

[14] Yguaratã Cerqueira Cavalcanti et al. “The bug report duplication

problem: an exploratory study”. In: Software Quality Journal 21.1

(2013), pp. 39–66.

[15] Wei-Neng Chen and Jun Zhang. “Ant colony optimization for soft-

ware project scheduling and staffing with an event-based sched-

uler”. In: IEEE Transactions on Software Engineering 39.1 (2013), pp. 1–

17.

[16] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. “Exploration

and exploitation in evolutionary algorithms: a survey”. In: ACM

Computing Surveys (CSUR) 45.3 (2013), p. 35.

[17] Kalyanmoy Deb et al. “A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimization: NSGA-II”. In: Interna-

tional Conference on Parallel Problem Solving From Nature. Springer.

2000, pp. 849–858.

[18] Juan J Durillo and Antonio J Nebro. “jMetal: A Java framework for

multi-objective optimization”. In: Advances in Engineering Software

42.10 (2011), pp. 760–771.

BIBLIOGRAPHY 97

[19] Eclipse Foundation. Eclipse Java development tools (JDT). 2018. URL:

EclipseJavadevelopmenttools.

[20] Eclipse Foundation. Eclipse Platform. 2018. URL: https://projects.

eclipse.org/projects/eclipse.platform.

[21] Marcela Genero, Mario Piattini, and Coral Calero. “Empirical val-

idation of class diagram metrics”. In: Empirical Software Engineer-

ing, 2002. Proceedings. 2002 International Symposium n. IEEE. 2002,

pp. 195–203.

[22] Mark Harman et al. “Search based software engineering: Techniques,

taxonomy, tutorial”. In: Empirical software engineering and verifica-

tion. Springer, 2012, pp. 1–59.

[23] Hao Hu et al. “Effective bug triage based on historical bug-fix in-

formation”. In: Software Reliability Engineering (ISSRE), 2014 IEEE

25th International Symposium on. IEEE. 2014, pp. 122–132.

[24] Paweł Janczarek and Janusz Sosnowski. “Investigating software test-

ing and maintenance reports: Case study”. In: Information and Soft-

ware Technology 58 (2015), pp. 272–288.

[25] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. “Improv-

ing bug triage with bug tossing graphs”. In: Proceedings of the the

7th joint meeting of the European software engineering conference and the

ACM SIGSOFT symposium on The foundations of software engineering.

ACM. 2009, pp. 111–120.

Eclipse Java development tools
https://projects.eclipse.org/projects/eclipse.platform
https://projects.eclipse.org/projects/eclipse.platform

98 BIBLIOGRAPHY

[26] Dongwon Kang, Jinhwan Jung, and Doo-Hwan Bae. “Constraint-

based human resource allocation in software projects”. In: Software:

Practice and Experience 41.5 (2011), pp. 551–577.

[27] Muhammad Rezaul Karim et al. “An empirical investigation of

single-objective and multiobjective evolutionary algorithms for de-

veloper’s assignment to bugs”. In: Journal of Software: Evolution and

Process 28.12 (2016), pp. 1025–1060.

[28] Elias Khalil, Mustafa Assaf, and Abdel Salam Sayyad. “Human re-

source optimization for bug fixing: balancing short-term and long-

term objectives”. In: International Symposium on Search Based Soft-

ware Engineering. Springer. 2017, pp. 124–129.

[29] A Güneş Koru et al. “An investigation into the functional form of

the size-defect relationship for software modules”. In: IEEE Trans-

actions on Software Engineering 35.2 (2009), pp. 293–304.

[30] Zhongpeng Lin et al. “An empirical study on bug assignment au-

tomation using Chinese bug data”. In: 2009 3rd International Sympo-

sium on Empirical Software Engineering and Measurement. IEEE. 2009,

pp. 451–455.

[31] Sumio Masuda and Kazuo Nakajima. “An optimal algorithm for

finding a maximum independent set of a circular-arc graph”. In:

SIAM Journal on Computing 17.1 (1988), pp. 41–52.

BIBLIOGRAPHY 99

[32] Andrew McCallum. “Multi-label text classification with a mixture

model trained by EM”. In: AAAI workshop on Text Learning. 1999,

pp. 1–7.

[33] G Murphy and D Cubranic. “Automatic bug triage using text cat-

egorization”. In: Proceedings of the Sixteenth International Conference

on Software Engineering & Knowledge Engineering. 2004.

[34] Antonio J Nebro et al. “Mocell: A cellular genetic algorithm for

multiobjective optimization”. In: International Journal of Intelligent

Systems 24.7 (2009), pp. 726–746.

[35] Jihun Park et al. “Practical Human Resource Allocation in Software

Projects Using Genetic Algorithm.” In: SEKE. 2014, pp. 688–694.

[36] H Pham. Software Reliability, 2000.

[37] Md Mainur Rahman and Guenther Ruhe. Resource allocation and

activity scheduling: bug fixing perspective. Tech. rep. Technical Re-

port, Software engineering decision support laboratory, University

of Calgary, 2010.

[38] Md Mainur Rahmana et al. “An empirical investigation of a genetic

algorithm for developer’s assignment to bugs”. In: Proceedings of the

First North American Search based Symposium. 2012.

[39] Outi Räihä. “Applying genetic algorithms in software architecture

design”. In: (2008).

100 BIBLIOGRAPHY

[40] Jian Ren, Mark Harman, and Massimiliano Di Penta. “Coopera-

tive co-evolutionary optimization of software project staff assign-

ments and job scheduling”. In: International Symposium on Search

Based Software Engineering. Springer. 2011, pp. 127–141.

[41] Saad bin Saleem, Yijun Yu, and Bashar Nuseibeh. “An Empirical

Study of Security Requirements in Planning Bug Fixes for an Open

Source Software Project”. In: Technical Report No. 2012-01, The Open

University (2012).

[42] Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. “On the

value of user preferences in search-based software engineering: a

case study in software product lines”. In: Proceedings of the 2013

International Conference on Software Engineering. IEEE Press. 2013,

pp. 492–501.

[43] Chayanika Sharma, Sangeeta Sabharwal, and Ritu Sibal. “A survey

on software testing techniques using genetic algorithm”. In: arXiv

preprint arXiv:1411.1154 (2014).

[44] David Talby et al. “Agile software testing in a large-scale project”.

In: IEEE software 23.4 (2006), pp. 30–37.

[45] Gregory Tassey. “The economic impacts of inadequate infrastruc-

ture for software testing”. In: National Institute of Standards and Tech-

nology, RTI Project 7007.011 (2002).

BIBLIOGRAPHY 101

[46] Jin Wu and Shapour Azarm. “Metrics for quality assessment of a

multiobjective design optimization solution set”. In: Journal of Me-

chanical Design 123.1 (2001), pp. 18–25.

[47] Junchao Xiao and Wasif Afzal. “Search-based resource scheduling

for bug fixing tasks”. In: Search Based Software Engineering (SSBSE),

2010 Second International Symposium on. IEEE. 2010, pp. 133–142.

[48] Geunseok Yang, Tao Zhang, and Byungjeong Lee. “Towards semi-

automatic bug triage and severity prediction based on topic model

and multi-feature of bug reports”. In: Computer software and appli-

cations conference (COMPSAC), 2014 IEEE 38th annual. IEEE. 2014,

pp. 97–106.

[49] Feng Zhang et al. “An empirical study on factors impacting bug

fixing time”. In: 2012 19th Working Conference on Reverse Engineering.

IEEE. 2012, pp. 225–234.

[50] Eckart Zitzler and Simon Künzli. “Indicator-based selection in mul-

tiobjective search”. In: International Conference on Parallel Problem

Solving from Nature. Springer. 2004, pp. 832–842.

[51] Eckart Zitzler and Lothar Thiele. “Multiobjective evolutionary al-

gorithms: a comparative case study and the strength Pareto ap-

proach”. In: IEEE transactions on Evolutionary Computation 3.4 (1999),

pp. 257–271.

102 BIBLIOGRAPHY

[52] Weiqin Zou et al. “Towards training set reduction for bug triage”.

In: Computer Software and Applications Conference (COMPSAC), 2011

IEEE 35th Annual. IEEE. 2011, pp. 576–581.

.1. Appendix A : Thesis External Links 103

.1 Appendix A : Thesis External Links

Item link

Eclipse Datasets https://sites.google.com/site/mrkarim/
bug-data.zip?attredirects=0

Industrial DataSets http://plan4bugs.me/industrial-data

Experiment Page http://plan4bugs.me

Experiment dataset http://plan4bugs.me/experiment-data

Thesis Latex Docu-
ment

https://www.overleaf.com/read/smgssbkchfhy

Thesis Source Code https://bitbucket.org/eliasdk/bugplanning

https://sites.google.com/site/mrkarim/bug-data.zip?attredirects=0
https://sites.google.com/site/mrkarim/bug-data.zip?attredirects=0
http://plan4bugs.me/industrial-data
http://plan4bugs.me
http://plan4bugs.me/experiment-data
https://bitbucket.org/eliasdk/bugplanning

	Introduction
	Problem Statement
	Research Questions
	Research Contribution
	Automated Bug Fixing Planning Framework
	Validating Framework on Three Different Datasets
	Addressing the Problem Through Many objectives
	Comparison Between Algorithms for Allocation Domain
	Comparing NSGA-II with Human Performance (Study Validation)

	Research Overview
	Research Activities

	Related Work
	Traditional Bug Assignment Approaches
	Automatic Assignment
	Semiautomatic Assignment

	Search Based Bug Assignment Approaches
	Thesis Distinction from Other Studies
	Literature Review Summary

	Background
	Multi-objective Evolutionary Algorithms (MOEAs) and Pareto-front solutions
	MOEAs applied in research

	Evolutionary Genetic Algorithms
	eGA general Design
	eGA Operators

	Evaluating multi-objective algorithms and HyperVolume (HV)
	Hyper Volume metrics

	JMetal- framework for developing metaheuristics for multi-objective optimization problems

	Research Methodology And Experiment Setup
	Experiment Data Sources
	Eclipse Project Data
	Industrial Data
	Datasets Available Bug Properties

	Experiment Setup
	Chromosome Structure
	Chromosome Operations

	Multi-Objective Fitness Evaluation
	Algorithms and jMetal Study
	Human vs. Algorithm Setup

	Experiment Assumptions

	Experiments Results and Analysis
	Algorithm Comparison
	Algorithm Minimum Run Time
	Human vs. SBSE Experiment

	Framework Planner Advisor UI Tools
	Solutions Radar Charts
	Gannt Plan Chart

	Results Impact and Use

	Conclusion And Future Work
	Threats to Validity
	Conclusion
	Difficulties and Obstacles
	Future Work
	Man in the loop support
	Integration with Management tools

	Bibliography
	Appendix A : Thesis External Links

